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ABSTRACT 

Proposed method is dealing with multi-dimensional data modeling, extrapolation and interpolation using 
the set of high-dimensional feature vectors. Identification of handwriting, signature, faces or fingerprints 
need data modeling and each model of the pattern is built by a choice of characteristic key points and 
multi-dimensional modeling functions. Novel modeling via nodes combination and parameter γ as N-
dimensional function enables data parameterization and interpolation for feature vectors. Multi-
dimensional data is modeled and interpolated via different functions for each feature: polynomial, sine, 
cosine, tangent, cotangent, logarithm, exponent, arc sin, arc cos, arc tan, arc cot or power function. 
 
Keywords: image retrieval; pattern recognition; data modeling; vector interpolation; PFC method; feature 
reconstruction; probabilistic modeling 
 
 
INTRODUCTION 
The idea of paper is connected with different curve 
modeling for the same set of curve points (nodes). The 
problem of multidimensional data modeling appears in 
many branches of science and industry. Image retrieval, 
data reconstruction; object identification or pattern 
recognition are still the open problems in artificial 
intelligence and computer vision. The paper is dealing 
with these questions via modeling of high-dimensional 
data for applications of image segmentation in image 
retrieval and recognition tasks. Handwriting based 
author recognition offers a huge number of significant 
implementations which make it an important research 
area in pattern recognition. There are so many 
possibilities and applications of the recognition 
algorithms that implemented methods have to be 
concerned on a single problem: retrieval, identification, 
verification or recognition. This paper is concerned with 
two parts: image retrieval and recognition tasks. Image 
retrieval is based on modeling of unknown features via 
combination of N-dimensional functions for each feature. 
In the case of biometric writer recognition, each person is 
represented by the set of modeled letters or symbols. The 
sketch of proposed method consists of three steps: first 
handwritten letter or symbol must be modeled by a 
vector of features (N-dimensional data), then compared 
with unknown letter and finally there is a decision of 
identification. Author recognition of handwriting and 
signature is based on the choice of feature vectors and 
modeling functions. So high-dimensional data 
interpolation in handwriting identification [20] is not 
only a pure mathematical problem but important task in 
pattern recognition and artificial intelligence such as: 
biometric recognition, personalized handwriting 
recognition [3-5], automatic forensic document 
examination [6,7], classification of ancient manuscripts 
[8]. Also writer recognition [9] in monolingual 
handwritten texts is an extensive area of study and the 
methods independent from the language are well-seen 
[10-13]. Proposed method represents language-
independent and text-independent approach because it 
identifies the author via a set of letters or symbols from 
the sample. 
 

 
Writer recognition methods in the recent years are going 
to various directions [14-18]: writer recognition using 
multi-script handwritten texts, introduction of new 
features, combining different types of features, studying 
the sensitivity of character size on writer identification, 
investigating writer identification in multi-script 
environments, impact of ruling lines on writer 
identification, model perturbed handwriting, methods 
based on run-length features, the edge-direction and 
edge-hinge features, a combination of codebook and 
visual features extracted from chain code and 
polygonized representation of contours, the 
autoregressive coefficients, codebook and efficient code 
extraction methods, texture analysis with Gabor filters 
and extracting features, using Hidden Markov Model [19] 
or Gaussian Mixture Model [1]. So hybrid soft computing 
is essential: no method is dealing with writer 
identification via N-dimensional data modeling or 
interpolation and multidimensional points comparing as 
it is presented in this paper. The paper wants to approach 
a problem of curve interpolation and shape modeling by 
characteristic points in handwriting identification [2]. 
Proposed method relies on nodes combination and 
functional modeling of curve points situated between the 
basic set of key points. The functions that are used in 
calculations represent whole family of elementary 
functions with inverse functions: polynomials, 
trigonometric, cyclometric, logarithmic, exponential and 
power function. Nowadays methods apply mainly 
polynomial functions, for example Bernstein polynomials 
in Bezier curves, splines [25] and NURBS. But Bezier 
curves don’t represent the interpolation method and 
cannot be used for example in signature and handwriting 
modeling with characteristic points (nodes). Numerical 
methods [21-23] for data interpolation are based on 
polynomial or trigonometric functions, for example 
Lagrange, Newton, Aitken and Hermite methods. These 
methods have some weak sides and are not sufficient for 
curve interpolation in the situations when the curve 
cannot be built by polynomials or trigonometric 
functions [24]. 
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This paper presents novel method of high-dimensional 
interpolation in hybrid soft computing and takes up 
method of multidimensional data modeling. The method 
requires information about data (image, object, and 
curve) as the set of N-dimensional feature vectors. So this 
paper wants to answer the question: how to retrieve the 
image using N-dimensional feature vectors and to 
recognize a handwritten letter or symbol by a set of high-
dimensional nodes via hybrid soft computing? 
 
MULTIDIMENSIONAL MODELING OF FEATURE 
VECTORS 
Proposed method is computing (interpolating) unknown 

(unclear, noised or destroyed) values of features between 

two successive nodes (N-dimensional vectors of features) 

using hybridization of mathematical analysis and 

numerical methods, Calculated values (unknown or 

noised features such as coordinates, colors, textures or 

any coefficients of pixels, voxels and doxels or image 

parameters) are interpolated and parameterized  for  real 

number  i  [0;1] (i = 1,2,…N-1) between two successive 

values of feature. This method uses the combinations of 

nodes (N-dimensional feature vectors) p1=(x1,y1,…,z1), 

p2=(x2,y2,…,z2),…, pn=(xn,yn,…zn) as h(p1,p2,…,pm) and 

m=1,2,…n to interpolate unknown value of feature (for 

example y) for the rest of coordinates: 

c1 = 1xk+ (1-1)xk+1,…… cN-1 = N-1zk+ (1-N-1)zk+1 ,      

k = 1,2,…n-1, 

c = ( c1,…, cN-1),   α = (α1,…, N-1),   γi = Fi(αi)  [0;1],     
i = 1,2,…N-1 

   

),...,,()1()1()( 211 mkk ppphyycy   

,(1) 

αi  [0;1],  γ = F(α) = F(α1,…, N-1)  [0;1]. 

Then N-1 features c1,…, cN-1  are parameterized by 1,…, 

N-1 between two nodes and the last feature (for example 

y) is interpolated via formula (1). Of course there can be 

calculated x(c) or z(c) using (1). Two examples of h 

(when N = 2) computed for MHR method [26] with good 

features because of orthogonal rows and columns at 

Hurwitz-Radon family of matrices: 
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The simplest nodes combination is 
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and then there is a formula of interpolation: 

1)1()(  ii yycy  . 

Formula (1) gives the infinite number of calculations for 
unknown feature determined by choice of F and h. 
Nodes combination is the individual feature of each 

modeled data. Coefficient γ=F(α) and nodes 
combination h are key factors in data interpolation and 
object modeling. 
 
N-dimensional functions in modeling  
Unknown values of features, settled between the nodes, 
are computed using (1). Key question is dealing with 
coefficient γ. The simplest way of calculation means h = 
0 and γi = αi. Then proposed method represents a linear 
interpolation. Each interpolation requires specific 
values of αi and γ in (1) depends on parameters αi  
[0;1]:  
 
γ=F(α),  F:[0;1]N-1→[0;1],  F(0,…,0) = 0,  F(1,…,1) = 1 
 
and F is strictly monotonic for each αi separately. 
Coefficient γi are calculated using appropriate function 
and choice of function is connected with initial 
requirements and data specifications. Different values 
of coefficients γi are connected with applied functions 
Fi(αi). These functions γi = Fi(αi) represent the examples 
of modeling functions for αi  [0;1] and real number s > 
0, i = 1,2,…N-1. Each function is applied for different 
modelling:  
γi=αis, γi=sin(αis·π/2), γi=sins(αi·π/2), γi=1-cos(αis·π/2), 
γi=1-coss(αi·π/2), γi=tan(αis·π/4), γi=tans(αi·π/4), 
γi=log2(αis+1), γi=log2s(αi+1),  
γi=(2α–1)s, γi=2/π·arcsin(αis), γi=(2/π·arcsinαi)s,  
γi=1-2/π·arccos(αis),    γi=1-(2/π·arccosαi)s, 
γi=4/π·arctan(αis),   γi=(4/π·arctanαi)s,  
γi= (π/2–αis·π/4),    γi=ctgs(π/2-αi·π/4),  
γi=2-4/π·arcctg(αis), γi=(2-4/π·arcctgαi)s 
 
or any strictly monotonic function between points (0;0) 
and (1;1). For example interpolations of function y=2x 
for N = 2, h = 0 and γ = αs with s = 0.8 ctg (FIGURE 1) is 
much better than linear interpolation. 
 

FIGURE 1: Two-dimensional modeling of function y=2x 

with seven nodes and h=0, γ=α0.8 

Functions γi are strictly monotonic for each variable αi 
 [0;1] as γ = F(α) is N-dimensional modeling function, 
for example: 
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and every  monotonic combination of γi such as 
 
γ=F(α),  F:[0;1]N-1→[0;1],  F(0,…,0) = 0,  F(1,…,1) = 1 
 
For example when N = 3 there is a bilinear 
interpolation: 
  γ1 = α1 , γ2 = α2  , γ = ½(α1 + α2)                                         (4) 

or a bi-quadratic interpolation: 

  γ1 = α12 , γ2 = α22  , γ = ½(α12 + α22)                    (5)
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or a bi-cubic interpolation: 

  γ1 = α13 , γ2 = α23  , γ = ½(α13 + α23)                    (6) 
 
or others modeling functions γ. Choice of functions γi and 
value s depends on the specifications of feature vectors and 
individual requirements. What is very important: two data 
sets (for example a handwritten letter or signature) may 
have the same set of nodes (feature vectors: pixel 
coordinates, pressure, speed, angles) but different h or γ 
results in different interpolations (Fig.2-4). Here are three 
examples of reconstruction (Fig.2-4) for N = 2 and four 
nodes: (-1.5;-1), (1.25;3.15), (4.4;6.8) and (8;7). 
Formula of the curve is not given. Algorithm of proposed 
retrieval, interpolation and modeling consists of five steps: 
first choice of nodes pi (feature vectors), then choice of 
nodes combination h(p1,p2,…,pm), choice of modeling 
function γ = F(α), determining values of αi  [0;1] and 
finally the computations (1) 
 
 

 

FIGURE 2: 2D modeling for γ = α2 and h = 0 
 

And other interpolations for the same set of nodes: 
 

 

FIGURE 3: 2D reconstruction for γ = sin(α2·π/2) and h in (2). 

 

 

 

 

 

 

 
FIGURE 4: 2D interpolation for γ = tan(α2·π/4) and  

h = (x2/x1)+ (y2/y1) 
 

So there are different data reconstructions with different 
modeling functions. As it can be observed, there is one 
extremum between two nodes for modeling with h ≠ 0 
(Fig.3-4). Comparing with polynomial or spline 
interpolations, there is one very important question: how 
to avoid extremum between each pair of nodes and 
how to minimize interpolation error? Generally 
current methods do not answer this key question. 
Nowadays methods of interpolations rely mainly on 
polynomials, especially on cubic splines. It means that 
there are interpolation polynomials W(x) of degree 3 for 
every range of two successive interpolation nodes (xi,yi) 
and (xi+1,yi+1). This method of cubic splines is C2 class – 
this fact is very important in many applications of cubic 
interpolation. But second important feature of this 
method is interpolation error for function f(x): 
 
 

 

 
So interpolation error depends on second derivative in 
the range of nodes [a;b] and this value cannot be 
estimated in general. Cubic spline can have extremum 
and may differ from interpolated function f(x) very 
much. Also interpolation polynomial Wn(x) of degree n 
(Lagrange or Newton) for n+1 nodes (x0,y0), (x1,y1) … 
(xn,yn) is connected with unpredictable error in general 
with calculations of derivative rank n+1: 
 

 

 

Proposed method with h = 0 and α  [0;1] represents 

formulas as convex combinations of nodes’ coordinates: 

 

and interpolation error in general between two nodes 
looks as follows: 
 
 
 
Proposed method is dealing with such significant 
features: 
 no extremum between two nodes; 
 interpolation error does not depend on the value of 

derivative in the nodes or outside the nodes (even if 
derivative does not exist); 

 interpolated function can be smooth in the nodes 
(class C1); 

 reconstruction of the function that much differs from 
the shape of polynomial, and not only function but 
any curve, also closed; 

 extrapolation is calculated with the same formulas for 
α[0;1]; 

 the idea of linear interpolation is applied for other 
modeling functions, not only γ = α1; 

 convexity between the nodes is fixed using two 
modeling functions: 

γk = αs   or    γk = sin(αs·π/2)   
with real parameter s > 0 

 
These two kinds of modeling functions are the simplest 
function, chosen via many calculations as follows: 
 γk = αs if convexity is not changing between the nodes 

(xk,yk) and (xk+1,yk+1); 
 γk = sin(αs·π/2) if convexity is changing between the 

nodes (xk,yk) and (xk+1,yk+1)
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THEOREM If:  
1. There are given nodes of continuous function 

 y = f(x): (x0,y0), (x1,y1) … (xn,yn), n ≥ 2; 
2. There are formulas to calculate values between the 

nodes: 
 
 
 
α  [0;1], k = 2,3…n-1, γk = αs or γk = sin(αs·π/2) with 
real parameter s > 0; 
 
3. Three successive nodes are monotonic, for example 

let’s assume: 
y0 > y1 > y2  or  y0  < y1 < y2  

 
Then there is the method of 2D curve interpolation and 
extrapolation such as: 
T.1: There is no extremum between two successive 
nodes – interpolated function is monotonic in the range 
of two nodes. 
 
T.2: Interpolated curve is class C0 (continuous) or C1 

(continuous and smooth). 
 
T.3: Interpolation error does not depend on the value of 
derivative in the nodes or outside the nodes (even if 
derivative does not exist). 
 
T.4: Convexity between two nodes (xk,yk) and (xk+1,yk+1) 
is fixed using modeling functions γk = αs (if convexity is 
not changing) or γk = sin(αs·π/2) (if convexity is 
changing). 
 
T.5: Extrapolation is calculated with the same formulas 
for α  [0;1]. 
 
Proof: 
T.1: Convex combination to calculate x(α) and y(α) 
between two nodes with strictly monotonic function γk 
gives us monotonic interpolation of the curve with no 
extremum between two nodes. 
 
T.2: Interpolated curve is class C0 (continuous) just 
from definition of x(α) and y(α). Also smooth 
interpolation between nodes is achieved with the same. 
Only smooth function in the inner nodes must be 
proved. Here is shown how to achieve smooth function 
in the inner nodes – let’s assume then yk ≠ yk+1 for each 
k. If yk = yk+1 for any k, then according to T.1 there must 
be the simplest linear interpolation between nodes 
(xk,yk) and (xk+1,yk+1) and interpolated curve is not 
smooth in nodes (xk,yk) and (xk+1,yk+1) 
 
For first three monotonic nodes (x0,y0), (x1,y1) and 
(x2,y2) there are calculations to fix parameter s for 
modeling function γ1 between nodes (x0,y0) and (x2,y2) 
interpolating node (x1,y1) inside: 
 
 

 

If convexity is not changing between (x0, y0) and (x2,y2), 

then γ1 = αs and 

If convexity is changing between (x0, y0) and (x2,y2), then 

γ1 = sin(αs·π/2) and 

A1 (beginning of the loop in algorithm for k = 2,3…n-1): 
Having modeling function γ1 between nodes (x0,y0) and 
(x2,y2), it is possible for any α*→0 calculate 
 
 

Then left difference quotient c is computed in the node 
(x2,y2):  

 
 
 
 

Of course if value of derivative in (x2,y2) is known,  
c = f ’(x2) ≠ 0. Then parameter u is fixed to obtain left (c) 
and right difference quotient equal in (x2,y2) - it means 
smooth in this node. If y3 preserves the same 
monotonicity like y2 and y1 (y1>y2>y3 or y1<y2<y3) then 
 
 
 
 
If y3 does not preserve the same monotonicity like y2 
and y1 then (because of different sign of left and right 
difference quotient) 
 
 
 
 
And as it was: if convexity is not changing between 
(x2,y2) and (x3,y3), then γ2 = αs and 
 
 
 
If convexity is changing between (x2,y2) and (x3,y3), then 
γ2 = sin(αs·π/2) and 
 
 
 
 
So smooth interpolation function in the node (x2,y2) is 
achieved. And smooth interpolation for next range of 
nodes (x3,y3) and (x4,y4) is starting like loop A1 for k=3. 
And so on till last range of nodes (xn-1,yn-1) and (xn,yn) for 
k = n-1 in A1. 
 
T.3: According to T.1 – interpolation error between two 
nodes for each k is equal: 
 
 
 
T.4: These modeling functions are the simplest 
functions to achieve convexity changing or not. 
 
T.5: Extrapolation left of first node (x0,y0) is done with 
modeling function γ1 and α>1. Extrapolation right of last 
node (xn,yn) is done with modeling function γn-1 and α<0. 
Then modeling function γn-1 must have domain with 
α<0. If not, there is possibility to define: 
 

 

 
This theorem describes main features of proposed 
method. 
 
CONCLUSIONS 
The autor’s method enables interpolation and modeling of 
high-dimensional data using features’ combinations and 
different coefficients γ: polynomial, sinusoidal, 
cosinusoidal, tangent, cotangent, logarithmic, exponential, 
arc sin, arc cos, arc tan, arc cot or power function. 
Functions for γ calculations are chosen individually at 
each data modeling and it is treated as N-dimensional 
function: γ depends on initial requirements and 
features’ specifications. Novel method leads to data 
interpolation as handwriting or signature identification 
and image retrieval via discrete set of feature vectors in 
N-dimensional feature space. So this method makes
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possible the combination of two important problems: 
interpolation and modeling in a matter of image 
retrieval or writer identification. Main features of the 
method are: this interpolation develops a linear 
interpolation in multidimensional feature spaces into 
other functions as N-dimensional functions; nodes 
combination and coefficients γ are crucial in the process 
of data parameterization and interpolation: they are 
computed individually for a single feature; modeling of 
closed curves.  
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