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ABSTRACT 
In the current study, the performance of a synthetic wavelet CNN (Wave-CNN) was tested and then compared 
with geophysical field data; two separate synthetic studies were conducted for this purpose. In the first 
synthetic application, the success of the Wave-CNN method for the separation of regional-residual dipole 
structures was tested. In the second synthetic application, using prismatic structures with magnetic properties, 
the success of the Wave-CNN method to determine boundaries was compared with classical methods. It was 
found that the Wave-CNN method could not be repeated as many times as required. At first, it was possible to 
distinguish between regional and residual anomalies and successfully determine boundaries. As the number of 
repetitions increased, it was possible to clarify structures with stronger magnetic properties and to filter out 
structures with weak magnetic properties. The Wave-CNN using a vertical component of the magnetic field 
method was then applied to magnetic anomaly data from three Avnik iron mines located in the Bingöl Province, 
East Anatolia, Turkey: these areas are called, from south-to-north, Gonactepe, Heylandere and Miskel. The 
Wave-CNN outputs were also compared to drilling results from the study areas. Using this method, Wave-CNNs 
can be used to solve geophysical problems by detecting surface layer boundaries. In this Avnik field application, 
the Wave-CNN results showed high anomaly values indicating probable an iron ore deposit. In addition, 
represantive anomaly values were selected from the Wave-CNN outputs of each subarea and forward modeling 
was performed by applying Differential Evolution (DE) method. Thus, it has been shown that a good relation is 
obtained with the geological cross-section and geophysical model structures. 
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INTRODUCTION 
Magnetic anomaly analysis is used for geophysical 
applications, such as boundary detection and 
determining ore reserves. As well as classical 
geophysical techniques, artificial-intelligence neural 
network-based image-processing techniques have 
become useful. Recently, cellular neural networks 
(CNNs) have been used in geophysical studies with very 
good results; the CNN’s filtering performance provides 
parallel calculation for geophysical image processing. A 
CNN is a supervised learning algorithm that uses two 
matrices defined by a template. First, a learning 
algorithm is applied to geophysical measurements and 
a combined learning algorithm is then developed from 
a synthesis of the CNN learning and processing. Wavelet 
functions and backpropagation learning algorithms can 
be used to increase training speed. 
 
One of the most important problems for geophysics is the 
separation of regional and residual anomalies of potential 
fields and the determination of structural boundaries. As 
an alternative method, a wavelet transform has been 
widely used to model potential fields (Davis et al. 1994; 
Fedi and Quarta 1998; Ridsdill‐Smith and Dentith 1999; 
Ucan et al. 2000 and Alp et al. 2011). The wavelet method, 
used with local potential anomaly maps, is suitable for 
separating regional and residual anomaly maps (Fedi and 
Quarta 1998; Hornby et al. 1999). Several parameters 
associated with geological structures have been calculated  

 
 
using multi-scale edge analysis Holden et al. (2000) and 
boundaries of embedded structures have been determined 
by applying noise analysis Boschetti et al. (2001). Magnetic 
anomalies obtained from archaeological sites using the 
enhanced horizontal derivative method with the wavelet 
method have been used to find the edges of structures and 
boundaries and parameters of archaeological structures 
have also been determined using the wavelet method for 
archaeological sites (Fedi and Florio 2003; Albora et al. 
2004). The wavelet method has been used for the 
determination of structural borders (Alp et al. 2011).  
 
Cellular neural networks (CNNs) were proposed by Chua 
and Yang (1988) and the development of recurrent 
learning algorithms for stable CNNs was proposed by 
(Matsumoto et al. 1990; Slot 1992; Chua and Roska 2002).  
The CNN method was used for the first time to solve 
geophysical problems by separating regional and residual 
anomalies by Albora et al. (2001a, 2001b). A CNN was used 
to reveal fault lines in the Lakes Region, Western Anatolia 
and to model synclinal and anticlinal structures (Albora et 
al. 2007a).   
 
In previous studies aeromagnetic data were modeled in 2.5 
dimensions (Fedi et al.  1998), while other authors applied 
forward modelling by using forced neural networks 
method in potential sources (Osman et al. 2015; Osman et 
al. 2007). 
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They showed the efficiency of magnetic anisotropy by 
solving magnetic data with inverse solution (Liu et al. 
2018). They modeled the gravity and magnetic anomaly of 
fault-shaped structures using Differential Evolution versus 
Particle Swarm Optimization method (Ekinci et al. 2019). 
 
METHOD 
In the current study, two different synthetic studies were 
conducted to test the success of the wavelet CNN (Wave-
CNN) method for magnetic methods. The first synthetic 
work was a regional-residual separation of dipole 
constructions. In the second synthetic work, it was used to 
determine the structural boundaries of three different 
prisms and to separate a boundary structure in a magnetic 
anomaly map obtained from the Bingöl mine site. Wave-
CNN method regional and residual separation acquired 
better results than classical methods. The Wave-CNN 
anomaly maps were correlated with drilling results. 
 
• Wavelet-Cellular Neural Network 
The emergence of superior features of the wavelet theory 
in comparison with the classical methods in signal and 
image separation has led the researchers to work 
intensively in this field. In Artificial Neural Networks, 
successful results in signal and image processing 
applications have enabled the studies on the use of these 
two methods together. In this study, wavelet transform is 
used in preprocessing unit for feature extraction. The 
feature vectors obtained in this unit form the input set of 
artificial Neural Networks. It has been seen that the feature 
vectors obtained as a result of wavelet transform give very 
good results in applications using this structure. The 
properties of wavelet functions allow the lossless analysis 
of signals. In order to examine the contribution of this 
analysis feature to convergence in artificial neural 
networks, the use of wavelet functions as activation 
functions was realized. Firstly, the most appropriate 
wavelet function search has been made. At the end of the 
study, the selected wavelet function was used in forward 
multilayer network structure. This new network is called 
the Wavelet Artificial Neural Network (Wave-CNN). 
 
The Wavelet Artificial Neural Network consists of a hidden 
layer and an output layer. Wavelet function is used in the 
hidden layer of this network and linear function is used in 
the output layer. (Wave-CNN) 's backpropagation algorithm 
was used in the training. It is mandatory that the activation 
functions can be derived from the operation of this 
algorithm. Log-sigmoid, hyperbolic tangent sigmoid and 
linear functions are used as activation functions in 
multilayer networks that are widely used. The selection of 
the wavelet function requires that the derivative is 
obtainable and that it can be used in the back propagation 
algorithm. Haar wavelet is not preferred because it is not 
continuous. As a result of studies on Morlet wavelet and 
Mexican hat functions, it has been observed that Mexican hat 
provides high performance.  
 
This function can be expressed as;  

𝜓 = (1 − 𝑥2)𝑒−𝑥2
  (1) 

 
The expression of the linear function used in the output 
layer of Wave-CNN is given as y=x. 
 
The forward propagation expression of the Wave-CNN 
method is as follows (Figure 1);  
 

 𝑦 = 𝑤2(𝜓(𝑤1𝑥 + 𝑏1)) + 𝑏2 (2) 

  
 

Here; 𝑤1: Link weight matrix for the first layer, 𝑥:Input set, 
𝑤2:  connection weights (wavelet coefficients) between 
wavelet neurons and output, 𝑏1 𝑎𝑛𝑑 𝑏2: threshold values 
in each layer, ψ:wavelet function. 
 
The aim of training of artificial neural networks is that the 
relationship between the targeted outputs and the input 
set can be expressed by a correlation of activation 
functions, weight coefficients and threshold values. The 
limiting measure in establishing this relationship is the 
error rate between the outputs of the network and the 
targeted values. It adjusts the weight coefficients in steps 
to minimize this error during network training. 
 
The purpose of the Wave-CNN method is to assume that the 
translation and scaling properties used in the analysis of these 
functions will increase the convergence rate. The convergence 
rate means that the error is minimized in a short time and 
network training is completed in a shorter time. 
 
Cellular Neural Network (CNN) is a two dimensional array 
of cells. These cells are in connection with only surrounding 
cell illustrated with a 4 x 4 cellular artificial neural network.  
 
(Figure 2). The main function of the CNN is converted to an 
output image in accordance with the intended purpose of 
any input image. Considering the initial state value of each 
pixel of the output image CNN is limited to be -1 and +1 
(Figure 3). In case of all cells are set to start, the calculation 
remains in a fixed position when no cells change their output 
states. CNN is stable convergence in the cells that depends 
on the deviation values and the appropriate template 
factors. CNN parameter values are assumed to be spaced-
invariant and the nonlinear function is chosen as piece-wise 
linear. A, B, and I are cloning template matrices that are 
identically repeated in the neighborhood of every neuron as 
(see for details; Chua and Yang 1988; Matsumoto et al. 1990; 
Slot 1992; Hagan et al. 1995; Albora et al. (2001a, 2001b); 
Chua and Roska 2002, Ucan et al 2002). 
 
In the CNN method, each cell has an architecture consisting of 
a linear input unit, a linear dynamic interface, and a 
symmetrical output unit based on the n-part origin (Figure 4).  
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Wavelet theory and learning in the feedforward network 
algorithms are used (see for details; Grossman and Morlet, 
1985; Daubechies, 1990; Akansu, and Haddad 1992; Rao 
and Bopardikar, 1998; Albora and Ucan, 2001). In 
feedforward networks with wavelet functions as a result of 
research on this subject it has been studied on the use of 
back-propagation algorithm. The new learning algorithm, 
was named wavelet learning algorithm, is obtained as a 
result of these two methods. They are applied to the CNN 
method. The smaller CNN architecture was built using this 
learning algorithm. This architecture is called Wave-CNN 
(see for details; Albora et al. 2007b). In Wave-CNN, one of 
the main problems is to find the best suited A, B and I 
templates for the real problem. 
 
Step 1. The feedback property of the CNN should be 
transferred to feedforward form. Step 2. The other critical 
point to be solved is to arrange the output non-linear 
function such that derivative property can be held. So, we 
have preferred wavelet functions.  
 
Step 3. The last step is altering the matrix form of A, B, and 
I template into vectoral form. 

(3) 
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Thus, we are able to start training by Back-Propagation 
algorithm.  The main equation is as follows: 
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      are steady state of Artificial Neural 
Network (ANN) output. In stable case, the network output 
will take only [-1, 1] values and training procedure is 
ended. For the average minimum error criteria, we use 
steepest descent algorithm as follows, 
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In partial derivative approach, Eq. 4 can be rewritten as 
(Hagan et al. 1995). 
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The derivative of F function is as (F is the error function 
expression of the network structure.), 
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We have used Mexican Hat function among wavelet 
functions (Figure 5), which suit Eq. 7 (see for details; 
Albora et al. 2007b). 
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Replacing Eq. 8 for the case of a=0.1 and b =2 in Eq.5, we 
obtain the following equation, 
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where, iteration number= k;  

(k+1) instant weight value= (k+1);  
(k) instant weight value=(k);  

Training ratio=; Input matrix=

k
j,iY

;  

Initial matrix=

k
j,i

x
;  

Stable output of Wave-CNN after kth iteration= 
)(yk

j,i 
;  

The desired output matrix= 

k
j,it
.  

 
 
 

• Wave-CNN Applications on Synthetic Data 
In the learning procedure, using A, B and I template 
elements in Eq. 8, they have been obtained Eq. 10.  
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Wave-CNN, approximately 10000-100000 replication interval 
of other feed forward neural networks only to the desired 
output for 10-100 replication reduces the time it takes to reach 
the training.  
 
We examined two-dimensional structure of a magnetic 
dipole, as shown in Figure 6. Here, Z is the vertical component 
of the field, can be written as (Telford et al. 1990), 
 
Z= (Vertical component of field due to –m)- (Vertical 
component of field due to +m) 
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k is susceptibility, Fo is earth's total magnetic field and S is 
surface area.  
 
Since we have assumed that the rod is magnetized along 
its axis, these expressions are valid only under following 
conditions:  

(i) the main field of the rod is very much larger than the 
external field;  
 

(ii) the rod is oriented along the field direction. 
 
Since one type of anomaly often masks another, the need 

arises to discrete the various anomalies from each other. 
 
The Wave-CNN method was used to test the method of 
separating of regional and residual anomalies. The second 
vertical derivative, upward and downward continuation 
methods for different parameters given in Table I, were 
applied (Figure 7a). The result of the second vertical 
derivative, upward and downward continuation in the total 
magnetic anomaly map, is shown in Figure 7b, c, d. The Wave-
CNN output of the first iteration is shown as an anomaly map 
in Figure 7e, and the anomaly map of the third iteration is 
displayed in Figure 7f. The Wave-CNN method provided a 
more successful distinction than classical methods. With 
increasing numbers of iterations, the strong magnetic 
anomaly values remained while the weaker magnetic 
anomaly values are disappeared (Figure 7e, 7f).  
 
For the second synthetic application (Table II), three 
different prisms were studied at different coordinates and 
at different depths (Figure 8). The purpose of this study 
was to compare the performance of the Wave-CNN method 
with conventional methods used to determine building 
boundaries. The total magnetic anomaly contour map of 
the three prisms is presented in Figure 9a, and a shaded 
relief map of these contours is shown in Figure 9b. When 
the derivation map of these prisms was used, the map 
presented in Figure 9c was obtained. As seen in Figure 9c, 
the boundaries of the two prisms in the upper part are 
blurred and the image is distorted.  
 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(11) 

(10) 
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The output, shown in Figure 9d, was obtained by applying 
an edge detection analytical signal method to the total 
magnetic anomaly, formed edge of prisms. Here, the 
boundaries of the prisms were not seen. The edge 
detection horizontal gradient method was then applied 
(Figure 9e), and the boundaries of the underlying prism 
were clearly seen; the adjacent edges of the upper prisms 
could not be separated and two prisms were displayed as 
if they were an extension of one prism. In the shaded relief 
map of the Wave-CNN output (Figure 9f), the boundaries 
of the prisms with three different parameters in the map 
obtained by this method were very clear. For this 
application, the Wave-CNN method was a very successful 
method for boundary detection.  
 
FORWARD MODELLING METHOD 
In this study, two-dimensional forward modeling was 
performed in order to show that the Wave-CNN method 
successfully separates the structures from each other and to 
show that the structure is well modeled. Differential 
Evolution versus Particle Swarm Optimization inverse 
solution technique was applied to one of the anomalies 
giving dipole shaped magnetic anomaly from Wave-CNN 
outputs of the application field given in formula 11. 
Differential Evolution (DE) is used to optimize actual 
parameters and real-valued functions (Storn, 1996; Storn 
and Price, 1997).  
 
In DE applications, firstly, some essential parameters, 
namely population number, crossover probability and the 
mutation constant (or weighting factor) are selected by the 
user, and then an initial population is generated The first 
process begins with mutation, which has several 
approaches in DE to obtain the donor vector (Storn and 
Price, 1997). The evolution strategy, including the 
mutation scheme, the number of difference vectors, and 
the binomial or exponential, is then selected (Balkaya, 
2013). The test vector is obtained using both the donor 
vector elements and the target vector, and the 
recombination process combines successful solutions 
taking into account the previous generation (Balkaya et al., 
2017). In the last step, considering the lowest mismatch 
values, the target vector or test vector is transferred to the 
next generation (Ekinci, 2016; Essa and ElHussein, 2018; 
Essa and Munschy, 2019). These operations in the 
evolutionary cycle continue up to a predefined number of 
iterations or until a satisfactory objective function value is 
reached. A flowchart showing the process steps in DE is 
shown in Figure 10.  
 
REGIONAL GEOLOGY OF THE STUDY AREA 
The study area, Avnik, is located in the Bingöl Province, 
East Anatolia, Turkey (Figure 11) and the geological map 
of the region is shown in Figure 12. The Department of 
Mining Research Institute (MTA) previously conducted 
magnetic surveys of Avnik to locate iron ore, and the 
magnetic surveys from the Gonactepe, Haylandere and 
Miskel fields, within the Avnik region, are discussed. 
 
• Lower Associations 
Lower associations in the Avnik region comprise three 
rock units: gneisses, felsic and metatuffs. The lower units 
of the lower associations are gneissic. The grey gneisses 
include biotite, garnet feldspar-quartz gneisses, magnetite 
and amphibole rich structures. The base of the gneiss unit 
is located thickness 1100 m. The upper units of the lower 
associations are mafic metavolcanites (Helvacı, 1984). 
Gneiss and metavolcanites containing iron strata are 
located on the south-west slope of Gonactepe and are cut 
by granite. 
 
• Upper Associations 
The upper associations in the Avnik region comprise mica 

schist and marble, and the bottom unit contains mica schist. 
The lower unit is intruded by the Avnik granitoid, a 
heterogeneous and strongly albitized rock, which has 
intrusive and gradational contacts with the metavolcanics, 
and the Yayla granite a homogeneous body in sharp contact 
with the surrounding rock (Helvacı, 1984). The white 
marble unit, which forms the uppermost part of the 
metamorphic units, is thought to correspond with a Jurassic 
dolomite unit overlain by discontinuous quartzite. The age 
of the upper Avnik region geology spans the Ordovician-
Silurian to the Jurassic (Erdogan and Dora, 1983).  
 
In the Avnik region, the apatite-bearing iron deposits are 
intercalated with lensoidal and massively banded 
metavolcanics of volcano-sedimentary origin. The ore bodies 
vary along strike and pinch out over short distances because 
of irregularities on the underlying volcanic topography they 
were deposited on (Erdoğan and Dora 1983).  An important 
unconformity is located between the lower and upper 
association levels (Erdoğan 1982). The oldest unit in the 
upper association, the mica schists, are located on different 
units of the eroded sub-community or on granites that 
crosscut them. After sedimentation of the upper association, 
the region was again folded and metamorphosed during the 
Cretaceous. In the course of this deformation, the NW-SE axis-
aligned Gonac anticline was formed (Figure 12). Iron beds 
extend throughout the anticline structure, and they appear 
centrally along the NW direction in both wings of the Gonac 
anticline (Figure 12). 

 
• General Features of the Magnetite-Apatite Avnik Iron  
Deposits  
The Avnik region was studied in three subareas; Miskel, 
Heylandere and Gonactepe. A fluxgate magnetometer is 
used by obtaining the magnetic values. Solar storms, daily 
changes in ground magnetic field and magnetic corrections 
were evaluated using the data from Kandilli observatory 
and Earthquake research institute.  
 
The massive and lenticular-shaped Avnik iron deposits 
comprise magnetite with small amounts of apatite. Within 
the magnetite zone, the prevailing ore types occur as 
amphibolites and metavolcanites. The most important 
economic iron deposits in the study area are gnays with 
felsic metatuffs-metavolcanites transition zones (Helvacı, 
1984). The oldest rock units in the region are 
metavolcanites. The metamorphic sequence extending in 
the SE-NW direction has a thickness of 3000 m. Metatuffs 
and metavolcanites are important ore deposits. They 
contain lens-shaped amphibolite schists alternating with 
the sidewall and are the ore bearing rock units of the 
Bingöl massif. Other types of rocks carry ore in only small 
quantities (Erdoğan and Dora 1983).  The most important 
mineralisation is located at Miskel, Heylandere and 
Gonactepe in the gneissic transition zones with the felsic 
metatuffs and metavolcanites and along the transition 
zones of both units. All mineralisation has the same 
structural characteristic and is compatible with side rock 
structure (Çelebi 1985). The lenses vary in thickness from 
5 to 10 m and the curved structure is 300 m (Erdoğan and 
Dora 1983). The iron ore minerals comprise magnetite and 
fluorapatite; martitis and hematite is rare. From an 
economic viewpoint, the most important ores in the Avnik 
region are iron and phosphorus, and generally, iron 
reserves are greater than phosphorus reserves (Çelebi 
1989).  
 
• The Gonactepe Region 
In the Gonactepe region, 35 parallel profiles were taken at 50m 
intervals. The measurement points on each profile were taken 
at 25m intervals. Maximum 27 measurements and 43 
measurements were taken in the profiles and total magnetic 
anomaly measurements were taken with a fluxgate
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magnetometer at a total of 1395 points. When the 
complete magnetic anomaly values in Miskel region are 
examined, a change between -28000 nT and 26000 nT can 
be seen (Figure 13). 
 
The Gonactepe deposit comprises magnetite, apatite and 
actinolite crystals. From drilling results, the ore is 5–10 m 
thicker than the granitoids but does not have economic 
value. These lenticular ore deposits are found associated 
with magnetite ore: apatite and actinolite. The Gonactepe 
deposit has an average phosphorus content of ~41% and a 
titanium content of ~36% (Helvacı, 1984).  
 
The mapped magnetic values (Figure 13a) range from 
−24,000 nT to 24,000 nT. Wave-CNN was applied to the 
vertical component of the magnetic field in the Gonactepe 
region. Figures 13b and 13c show the second and third 
iteration maps, respectively. The cross-section from the 
third iteration of the Wave-CNN output in Fig. 13c was 
modeled using the Differential Evolution method using the 
dipole anomaly approach (Eq 11). Model parameters were 
approximately 3m upper depth 15m lower depth and the 
dipole angle with the earth was found to be 1350 (Table III). 
 
Figure 14 presents the drilling sections for the Gonactepe 
region; four drill holes (G1, G6, G13 and G21) were available 
for this region. Sediment cover exists in the region, and the 
ore tops-up close to the surface and outcrops. Drilling 
conducted in areas with low anomaly values was designed 
to detect ore at depth. G1 drilling under 2 m of sediment was 
not noticed although it encountered high-grade ore, 
however, the Wave-CNN output did not detect anomalies in 
the drill hole. This example demonstrates the success of the 
Wave-CNN, and in other drilling fields, medium grade ore 
was found. The geological section (Figure 15a) was taken 
from where the magnetic section is located, and drill hole G6 
is located where the magnetic anomaly is low. The NW-SE 
oriented magnetic section, A1–A2, (Figure 15b) was 
constructed from the Wave-CNN output of the vertical 
component of the magnetic field of the Gonactepe area 
located on the G6 sounding. Ore is polarised depending on 
the orientation of the earth’s magnetic field, and the ore may 
be between a minimum anomaly and maximum anomaly 
depending on the direction of polarisation. Therefore, ore is 
located in the area of the A1–A2 section where it is negative 
magnetic anomaly.  
 
• The Heylandere Region  
In Heylandere area a total of 1144 measurement were 
taken at 26 parallel profiles on 50m intervals. The 
measurement points on each profile were taken at 25m 
intervals and at least 30 and at most 50 points were 
measured using a fluxgate magnetometer. The Heylandere 
deposit (Figure 16a) is located in a region of the map 
containing magnetic anomalies ranging from −7,000 nT to 
17,000 nT. In Figure 16b, the magnetic anomaly map of 
the Wave-CNN method shows the result of the second 
iteration. The output map obtained from the second 
iteration of the Wave-CNN method was cross-sectioned 
immediately next to the H9 well data and modeled using 
the differential evolution method using the dipole 
approach (Eq 11). The distance to the surface is calculated 
0.5m and the bottom depth is obtained 75 m, while the 
slope angle was calculated as 150o. 
 
The deposits here have almost the same stratigraphic 
features as others in the Avnik region; however, the 
deposit in the Heylandere region is not related to the other 
deposits. The northern part of the deposit is covered with 
alluvium. The ore is surrounded by Avnik granitoid, and 
the rocks are cut by granite, gneiss and amphibolite 
(Helvacı 1984). Massive iron ore lenses trend NW-SW and 
are inclined. The iron ore deposit is mainly concentrated 

around the H9 drill hole. In addition, Heylandere deposits 
are connected to the Gonactepe deposit by small lenses.  
 
The Wave-CNN method output analysis resulted in very 
strong anomaly values. Figure 17 shows the location of the 
three drill holes used: H1A, H7 and H9. Drillhole H9 is 
located nearby the anomaly. The best grade ore is 
observed in the H9 drill hole. The aim of this drilling, 
conducted over low anomalies, was to determine whether 
ore is present at depth. The H7 drilling was located outside 
of the strong anomalies in relation to the vertical 
component of the magnetic field (Figure 16b). The 
magnetic cross section, B1–B2, was constructed in a SW-
NE direction at the exit of the Wave-CNN (Figure 16b) 
where the H7 and H9 bores are located. The geological 
section (Figure 18a) was oriented in the same direction as 
the magnetic section (Figure 18b). A high magnetic 
anomaly was observed in the western part of the H9 
sounding. Here, massive magnetite creates a large 
magnetic effect, and there is good agreement between the 
geological section and the magnetic section, as shown in 
Figure 18.   
 
• The Miskel Region 
In the Miskel region, 34 profiles were taken parallel to each 
other at 50m intervals. The measurement points on each 
profile were taken at 25m intervals. 24 and 45 
measurements were taken at different profiles and the 
total magnetic anomaly measurements were taken with a 
fluxgate magnetometer at a total of 1395 points. When the 
complete magnetic anomaly values in Miskel region are 
examined, a change between -28000 nT and 35000 nT was 
observed (Figure 19). 
 
The main body of the Miskel ore bed comprises gneisses 
shaped like metavolcanic rocks. The sounding results 
showed that the banded ore is found up to 250 m deep. 
Disseminated iron occurrences are widespread in the 
amphibolite, gneiss and other metavolcanic rocks and are 
usually located adjacent to massive magnetite deposits. 
Stockwork iron deposits are located mainly adjacent to, or 
within, the granitoids in the eastern and southeastern part 
of the Miskel deposit and consist of complex networks of 
veins containing large crystals of mannetite, apatite and 
actinolite. The bedded sedimentary iron is mainly 
composed of granitoids in the eastern and southeastern 
parts of the Miskel bed and is comprised of a complex 
network of veins with wide crystals consisting of 
mannetite, apatite and actinolite. Stockworks also occur 
above and below the main ore body (Helvacı 1984).  
 
Figure 19a shows the complete magnetic anomaly map of 
the Miskel region. The Wave-CNN method was applied to 
this map; the results of the second iteration are presented 
in Figure 19b and the fourth iteration is presented in 
Figure 19c. The drilling section is very important; the 
mined, high grade deposit is close to the surface in the area 
of the Wave-CNN magnetic anomaly map. The model has 
been generated across the profile where intensive high 
anomaly is located that is the third iteration of the Wave-
CNN anomaly.   The model structure obtained by dipole 
approach was used in the Differential Evolution method 
and its parameters were given in Table III and modeled as 
vertical dipole with a surface depth of 35m and a surface 
depth of 95m. 
 
Anomaly maps produced by the Wave-CNN method were 
compared to the drilling locations (Figure 20). The Wave-
CNN anomalies corresponded to the highest values. The 
Miskel vertical component of the magnetic field, shown in 
Figure 19a, was taken from the Wave-CNN and from the 
SW-NE oriented section C1–C2. The magnetic section is 
mainly from the areas where the K13, K20 and K23 
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soundings were located. The geological section (Figure 
21a) is added below the magnetic section (Figure 21b). It 
was observed that the magnetic anomalies were high in the 
regions where the iron ore is concentrated.  
 
Drill hole KM10 had very high magnetic anomaly values; 
the ore is 20 m thick and not covered by any sediments in 
this section and was determined to be 95 m thick. 
Therefore, the observed ore anomalies indicate high 
values.  
 
RESULTS 
The new Wave-CNN method combines CNNs and wavelet 
methods. It has been used in recent years in geophysical 
engineering to distinguish regional-residual anomalies 
and to determine structural boundaries. Backpropagation 
algorithms and wavelet theory have been used in a 
learning algorithm developed in the CNN method. In the 
current study, the Wave-CNN method was first compared 
with the validity of the method used with synthetic data 
(Figure 7 and 9). After successful results were obtained 
with the synthetic data, a field study was carried out on the 
iron ore deposits of the Avnik region surveyed by the 
General Directorate of mineral research and exploration 
(MTA). 
 
The Wave-CNN method was applied to the magnetic 
anomaly maps in the area of iron ore in the Gonactepe, 
Heylandere and Miskel regions. The acquired Wave-CNN 
anomaly maps were compared with drilling results from 
the study regions. High-grade polarisation was found near 
the surface in the Gonactepe vertical component of the 
magnetic field. High anomalies are usually located 
between −24,000 nT and 25,000 nT (Figure 13). Mines are 
located near the surface in high anomaly areas. In addition, 
low anomaly values located in the Gonactepe region were 
seen in the G1, G6, G13 and G21 drill holes. The anomaly 
had a very low value in the G1 drill hole. It is accepted that 
if the anomaly value is low, there should be no high-grade 
ore. Figure 17 shows that the Wave-CNN output from drill 
hole G6 had high values. The G6 drill hole results show 4.0 
m of sediment, 2.6 m of medium grade ore and 12 m of low-
grade ore. The G13 drilling site results showed 4.4 m of 
sediment; 2.2 m of low-grade ore, 4.5 m of high-grade ore 
and 9 m of medium grade ore, with apatite. Figure 17 
shows that the anomaly value is low in drill hole G13. 
Figure 17 indicates that the Wave-CNN output and drill 
hole G13 show good agreement. The G21 drill hole results 
indicate 5.00 m of sediment; 5.0–11.0 m of medium grade 
ore with apatite above 11 m of sediment. Figures 13a and 
b show wave-CNN output. The mine is close to the surface 
where high anomalies are found. Drill 21 was made where 
the anomaly values were not visible and no mine was 
found. It is thought that if an anomaly value is high, this 
indicates high-grade ore. In Figure 15b, the magnetic 
anomaly section, A1–A2, is compared with the geological 
section from Figure 15a. It shows that the geological 
section and the magnetic section show good agreement 
with each other.  
 
The Haylandere region contains a strong magnetic 
anomaly, as shown in Figure 16. The Wave-CNN output 
magnetic anomaly map shows an effect in two magnetic 
field bands coming from H1A drilling just outside of a 
strong anomaly that indicated approximately 40-50 m of 
gneiss and mica  (Figure 17). Below 60 m, the ore is found 
in bands and has no economic value. The H9 drill hole, also 
located in the Haylandere region, showed a strong 
magnetic anomaly, and the drilling encountered a 
thickness of approximately 29 m of massive magnetite ore 
(Figure 17). Approximately 20 m of ore was observed to 
create a strong anomaly effect. Due to the influence of the 
ore in this area, a strong anomaly is present. 
 

Anomalies with high magnetic values were observed in the 
vertical component of the magnetic field of the Mişkel 
region (Figure 19a). The reason for this is that iron ores 
that create strong anomalies are close to the surface. The 
Wave-CNN method was applied to the vertical component 
of the magnetic field of the Miskel region: the second 
iteration result is shown in Figure 19b and the fourth 
iteration is shown in Figure 19c. As the number of Wave-
CNN output iterations increased, the high magnetic 
anomaly values became clearer. The Wave-CNN output 
had high magnetic properties and high tenor near the 
surface of the mine. The magnetic anomaly map based on 
the drilling data provides very important information 
(Figure 20). There is no anomaly in the KM1 drill hole 
(Figure 19). Based on these values, a small amount of low-
grade ore was interpreted. From the Wave-CNN where the 
KM2 sounding was located, it appeared that there was no 
strong anomaly value (Figure 19). When the KM2 drill hole 
was cut, no massive ore deposit was found, but a massive 
ore deposit was found when drilling the KM4 hole, at a 
depth of 70 m (Figure 20). Therefore, the effect of the 
anomaly on the Wave-CNN output seemed to be very low 
(Figure 19a, b). In the KM5 drill hole, amphibole schist was 
intersected, and low-grade ore was observed near the 
surface. Here, when the Wave-CNN output was examined, 
an anomaly that was not very strong was observed (Figure 
19a, b). The KM9 sounding was drilled far beyond the 
location of the anomaly values obtained from the Wave-
CNN output. As seen from the KM9 drill hole, mica schist 
and gneiss with amphibole extend to a depth of 
approximately 180 m, and below this is massive ore. 
Massive ore does not create a strong magnetic effect due to 
its deep root. The KM10 drill hole is located in the area of 
the highest value magnetic anomaly on the map. On the 
Wave-CNN output, the opening of the KM10 sounding was 
located where the strongest anomaly values are found. The 
KM10 drilling results indicate massive ore 20 m below the 
surface and approximately 60 m of gneiss with amphibole 
overlying 95 m of massive ore. The output of the Wave-
CNN was very strong and produced good results. Below the 
depth of the massive ore, mica schist and low-grade ore are 
found. The KM13 drill hole is sited at the centre of two high 
anomaly values determined as 17 m of low-grade ore and 
20 m of massive ore. Here, the low anomaly values and the 
magnetic effect of the low-grade ore are not very high. 
KM16’s location is shown in Figure 19 along with the 
output of the Wave-CNN and the effects of the low 
magnetic anomaly. Here, there is approximately 9 m of 
mica schist, between 9 and 70 m of high-grade ore, 40 m of 
gneiss with amphibole and up to 14 m of massive ore was 
intersected (Figure 20). The high anomaly values and 
massive ore were not intersected in the KM20 drilling 
location; approximately 8 m of mica schist and an 12 m 
band of massive ore was intersected. Therefore, the very 
high anomaly value was not observed in the Wave-CNN 
output. The location of drill hole KM22 and the results are 
shown in Figure 19. Here, approximately 20 m of mica 
schist and 120 m of massive ore were intersected in 
accordance with the high values of the magnetic anomaly. 
The KM23 drill hole site is located near high anomaly 
values. Here, approximately 8 m of mica schist and up to 
90 m of high-grade ore mixed with massive ore were 
observed. The C1–C2 section was compared with the 
geological section after the output of the Wave-CNN 
(Figure 21). The high magnetic anomaly values are 
consistent with the geological cross-section (Figure 21). 
 
CONCLUSION 
In the Avnik region,apatite-rich iron ores bear are widespread 
and showing volcanic characteristics. Metavolcanic rocks and 
granotoids associated with iron ores were folded during 
Alpine orogeny. The iron ore is banded, massif and scattered 
across the study area. 
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Magnetite, apatite and actiaolite are predominant minerals 
in large bed types. Magnetite formations are more 
common near the surface. Iron ores, which are very rich in 
apatite, were initially formed in volcanic environment. The 
presence of apatite and magnetite which are common 
together and the metavolcanites interlayered with them 
support this result.  
 
The results of the field study produced a wide range of 
magnetic anomalies in the areas where the MTA vertical 
magnetic anomaly   maps indicated magnetic effects. The 
Wave-CNN method produced very good residual anomaly 
maps, and when compared with drilling results, these high 
value anomalies produced the best results. Geological sections 
were modelled from the drilling data, and for comparison, 
magnetic profiles were taken from the geological sections; 
there was good agreement between the magnetic anomaly 
values and the geological sections. Dipole anomaly structures 
were considered as a results from the Wave-CNN outputs 
obtained from three different study sites in the Avnik region. 
The DE method was applied on the results of these anomaly 
structures. The results are consistent with both geological 
cross-section and drilling data 
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TABLE AND FIGURES 
 

TABLE 1. Parameters of dipoles z= upper depth; α= angle; L= length; x=distance.  
TABLE 2. Parameters of three different prisms (Inclination I=60, Denclination D=20). 
TABLE 3. Estimated model parameters calculated using DE method from cross-sections obtained as a result of Wave-CNN 

output of field data. 
FIGURE 1. The architecture of Wave-CNN method.  
FIGURE 2. A cellular neural network in 4x4 dimension. 
FIGURE 3. Piece-wice linear output function of CNN. 
FIGURE 4. Dynamic model of a CNN (The matrices A and B are cloning templates. A acts on the output of neighbouring 

cells and is as the feedback operator. B in turn effects the input control and is as the control operator. A 
constant bias I and the cloning templates determine the transient behaviour of the cellular nonlinear network). 

FIGURE 5.  Mexican hat wavelet function for a = 0.1 and b = 2 coefficients. 
FIGURE 6. Polarized Magnetic Dipole Model. 
FIGURE 7. Synthetic example for five dipoles 

a) The total magnetic dipole anomaly map of Table I (contour interval is 0.5 nT).  
b) The second vertical derivative method (contour interval is 0.5 nT/unit2).  
c) Downward method (contour interval is 0.5 nT, downward 1 unit)  
d) Upward method (contour interval is 0.1 nT, upward 2 unit)  
e) Wave-CNN output of Total magnetic anomaly map (first iteration, Contour interval is 0.03 nT).  
f) Wave-CNN output of Total magnetic anomaly map (third iteration, Contour interval is 0.03 nT). 

FIGURE 8.  Prisms with three different parameters. 
FIGURE 9. Three prisms the total magnetic anomaly  

a) contour map of Table II (contour interval is 50 nT).  
b) Shaded relief map.  
c) Derivative shaded relief map.  
d) Edge detection Analytic signal shaded Relief map.  
e) Edge detection horizontal gradient shaded Relief map.  
f) Wave-CNN output of shaded Relief map (first iteration). 

FIGURE 10.  Flowcharts showing the main processing steps of the DE algorithm (Ekinci et al 2019). 
FIGURE 11.  Location map of Bingöl region at the Turkey (The study area is shown in the box of Bingöl-Avnik region). 
FIGURE 12.  Bingol iron ore (Avnik region) Geology and Location map (Helvacı and Griffin (1983) has been changed  
FIGURE 13. Gonactepe located in the hills a) vertical component of the magnetic field (contour interval is 3600 nT) b) 

Wave-CNN output of Gonactepe vertical magnetic anomaly map (A1-A2 cross section, second iteration, 
Contour interval is 0.07 nT) c) Wave-CNN output of Gonactepe vertical magnetic anomaly map (third 
iteration, Contour interval is 0.07 nT) d) Model using DE algorithm from Wave-CNN output of the vertical 
component of the magnetic field anomaly map of a certain area.   

FIGURE 14. Drilling Logs of the Gonactepe iron ore reserves. 
FIGURE 15. Gonactepe area  

a) Vertical geological section of A1-A2 profile  
b) Vertical Magnetic anomaly cross-section of A1-A2 profile. 

FIGURE 16.  Heylandere region  
a) Vertical magnetic anomaly map (contour interval is 1000 nT)  
b) Wave-CNN output of Heylandere vertical magnetic anomaly map (A1-A2 cross section, second iteration, Contour 

interval is 0.02 nT)  
c) The model of the section using vertical component of the magnetic field anomaly map.  

FIGURE 17.  Vertical drilling sections of Heylandere region. 
FIGURE 18.  Heylandere region    

a) Vertical geological section of B1-B2 profile (Helvacı (1984) has been changed from)  
b) Vertical Magnetic anomaly cross-section of B1-B2 profile. 

FIGURE 19.  Miskel located in the hills  
a) vertical Magnetic anomaly map (contour interval is 2500 nT, C1-C2 cross section)  
b) Wave-CNN output of Miskel vertical magnetic anomaly map (second iteration, Contour interval is 0.02 nT)  
c) Wave-CNN output of Miskel vertical magnetic anomaly map (third iteration, Contour interval is 0.02 nT)  
d) Model structure from any section of the Wave-CNN output.  

FIGURE 20. Drilling Logs of the Miskel iron ore reserves. 
FIGURE 21. Miskel region  

a) Vertical geological section of C1-C2 profile (Helvacı (1984) has been changed from)  
b) Vertical Magnetic anomaly cross-section of C1-C2 profile. 

 
 

TABLE 1: Parameters of dipoles z= upper depth; α= angle; L= length; x=distance. 
 

Parameters Dipole1 Dipole 2 Dipole 3 Dipole 4 Dipole 5 
(x,y) coordinate 0,0 10,15 6, -10 -15,10 -10,10 
Z (deep) 5 4 3.5 4.5 3 
L (along) 16 5 2 3 5 
 (angle) 20 90 60 80 70 
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TABLE 2: Parameters of three different prisms (Inclination I=60, Denclination D=20). 

 
Prism Num. X1 Coor. X2 Coor. Y1 Coor. Y2 Coor. h Top of Depth H Bottom of 

Depth 
1 10 25 10 20 2 5 
2 12 45 25 40 3 6 
3 30 45 40 45 2.5 6 

 
 
 

TABLE 3: Estimated model parameters by using Differential Evolution (DE) method. The sections are considered after Wave-CNN 
output of the field data. 

 
Parameters Model 

Gonactepe 
Model 

Heylandere 
Model Miskel 

Z (deep) 3 m. 0.5 m. 35 m. 
L (along) 12 m. 70 m. 60 m. 
 (angle) 1350 1500 00 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1: The architecture of Wave-CNN method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

FIGURE 2:  The illustration of a Cellular Neural Network in 4x4 dimension. 
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FIGURE 3: Piece-wice linear output function of CNN. 

 
 
 
 
 
 

 
 
FIGURE 4: Dynamic model of a CNN (The matrices A and B are cloning templates. A acts on the output of neighbouring 
cells and is as the feedback operator. B in turn effects the input control and is as the control operator. A constant bias I 
and the cloning templates determine the transient behaviour of the cellular nonlinear network). 
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FIGURE 5: Mexican hat wavelet function for a = 0.1 and b = 2 coefficients. 

 

 

 

 

 

 

FIGURE 6: Polarized Magnetic Dipole Model. 
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FIGURE 7: Synthetic example for five dipoles  

a) The total magnetic dipole anomaly map of Table I (contour interval is 0.5 nT).  

b) The second vertical derivative method (contour interval is 0.5 nT/unit2).  

c) Downward method (contour interval is 0.5 nT, downward 1 unit)  

d) Upward method (contour interval is 0.1 nT, upward 2 unit)  

e) Wave-CNN output of Total magnetic anomaly map (first iteration, Contour interval is 0.03 nT). 

f) Wave-CNN output of Total magnetic anomaly map (third iteration, Contour interval is 0.03 nT). 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 8: Prisms with three different parameters. 
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FIGURE 9: Three prisms the total magnetic anomaly  

a) contour map of Table II (contour interval is 50 nT).  

b) Shaded relief map.  

c) Derivative shaded relief map.  

d) Edge detection Analytic signal shaded Relief map.  

e) E) Edge detection horizontal gradient shaded Relief map.  

f) Wave-CNN output of shaded Relief map (first iteration). 
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FIGURE 10: Flowcharts showing the main processing steps of the DE algorithm (Ekinci et al 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 11: Location map of Bingöl region at the Turkey (The study area is shown in the box of Bingöl-Avnik region). 
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FIGURE 12: Bingol iron ore (Avnik region) Geology and Location map (Helvacı and Griffin (1983) has been changed. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Gonactepe located in the hills  

a) vertical component of the magnetic field (contour interval is 3600 nT)  
b) Wave-CNN output of Gonactepe vertical magnetic anomaly map (A1-A2 cross section, second iteration, Contour 

interval is 0.07 nT)  
c) Wave-CNN output of Gonactepe vertical magnetic anomaly map (third iteration, Contour interval is 0.07 nT)          
d) Model illustration using a certain section from Wave-CNN output of the vertical component of the magnetic field 

anomaly map as a result of DE algorithm. 
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FIGURE 14: Drilling Logs of the Gonactepe iron ore reserves. 

 
FIGURE 15: Gonactepe area a) Vertical geological section of A1-A2 profile b) Vertical Magnetic anomaly cross-section of 

A1-A2 profile. 
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FIGURE 16: Heylandere region  

a) Vertical magnetic anomaly map (contour interval is 1000 nT)  
b) Wave-CNN output of Heylandere vertical magnetic anomaly map (A1-A2 cross section, second iteration, Contour 

interval is 0.02 nT)  
c) Illustration of the model from a section of vertical component of the magnetic field anomaly map.  
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FIGURE 17: Vertical drilling sections of Heylandere region. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 18: Heylandere region    

a) Vertical geological section of B1-B2 profile (Helvacı (1984) has been changed from) 
b) Vertical Magnetic anomaly cross-section of B1-B2 profile. 
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FIGURE 19: Miskel located in the hills  

a) vertical Magnetic anomaly map (contour interval is 2500 nT, C1-C2 cross section)  
b) Wave-CNN output of Miskel vertical magnetic anomaly map (second iteration, Contour interval is 0.02 nT)  
c) Wave-CNN output of Miskel vertical magnetic anomaly map (third iteration, Contour interval is 0.02 nT)  
d) Model structure of a any section using Wave-CNN output.  
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FIGURE 20: Drilling Logs of the Miskel iron ore reserves. 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 21: Miskel region  
a) Vertical geological section of C1-C2 profile (Helvacı (1984) has been changed from)  
b) Vertical Magnetic anomaly cross-section of C1-C2 profile. 
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