Antibacterial Effect of Karna Dhoopana Yoga Against Staphylococcus aureus in the Management of Puti Karna (CSOM)

M.A.G. Madushanka¹ and K.P.P. Peiris²*

¹BAMS graduate medical officer, Department of Shalya-Shalakya, Faculty of Indigenous Medicine Gampaha Wickramarachchi University of Indigenous Medicine, Sri Lanka

²Professor, Department of Shalya-Shalakya, Faculty of Indigenous Medicine Gampaha Wickramarachchi University of Indigenous Medicine, Sri Lanka

*Corresponding author details: Prof. Priyani P. Peiris; drpriyanip@gmail.com and priyanip@gwu.ac.lk

ABSTRACT

Puti Karna is a Chronic Disease caused by vitiated Kapha and Pitta dosha with its characteristic features of profuse thick Puti (foul odor), pūya (pus) discharge from the ear with or without pain. This entity can be correlated with the disease described in modern ENT (ear, nose and throat) known as Chronic Suppurative Otitis Media (CSOM). This disease entity in turn leads to severe complications as facial paralysis, lateral sinus thrombosis, labyrinthitis, meningitis and brain abscess. According to the Ayurveda system of medicine Puti Karna can be effectively managed by a very effective local modality known as a Karna Dhoopana. This study was carried out at the central laboratory of Gampaha Wickramarachchi University of Indigenous Medicine, Sri Lanka, using specially prepared fumigation instrument. This Karna Dhoopna Churna has mentioned in “Hasthasara Aushada Yoga Samgraha”. According to the observation, results of the study confirmed the fumigation for 30 minutes has a bactericidal effect on Staphylococcus aureus in vitro. This could be due to the bactericidal components present in the fumes of dhupana yoga. Further, this study confirmed that duration of Karna Dhoopana is an important factor. Its clinical effectiveness was confirmed without any reported complications after Karna Dhoopana treatment. Further, the study proved that the temperature of the fumes does not produce any side effects in the ear. Therefore, this study endeavored to validate the clinical data scientifically.

Keywords: Karna Dhooopana; Chronic Suppurative Otitis Media; Puti Karna

INTRODUCTION

Puti Karna is a Chronic Disease caused by vitiated Kapha and Pitta dosha with its characteristic features of profuse thick Puti (foul odor), pūya (pus) discharge from the ear with or without pain [1]. This entity can be correlated with the disease described in modern ENT (ear, nose and throat) known as Chronic Suppurative Otitis Media (CSOM). CSOM is a chronic inflammation of the middle ear and mastoid cavity which presents recurrent foul smelling suppurative discharge through a tympanic perforation [2]. It is a major cause of acquired hearing impairment in children as well as adults, especially in developing countries.

Over 90% of the burden is borne by countries in the South-East Asia and Western Pacific regions, Africa and several ethnic minorities in the Pacific Rim. Global burden of illness from CSOM involves 65 – 330 million individuals with draining ears, 60% of whom (39 – 200 million) suffer from significant hearing impairment [3]. CSOM accounts for 28000 deaths and a disease burden of over 2 million. This disease entity in turn leads to severe complications such as facial paralysis, lateral sinus thrombosis, labyrinthitis, meningitis and brain abscess [4]. While considering its management, most approaches to its treatment have been unsatisfactory or are very expensive and difficult.

According to the Ayurveda system of medicine, Puti Karna can be effectively managed by a very beneficial local modality known as a Karna Dhooopana [5]. This study was designed to determine the anti-bacterial activity of each samples on Karna Dhooopana yoga by using the spread plate method (Qualitative) against the Staphylococcus aureus (ATCC 25923).

RESEARCH METHODOLOGY

This study was carried out at the central laboratory of Gampaha Wickramarachchi University of Indigenous Medicine (GWUIM), Sri Lanka by using specially prepared fumigation instrument. This Karna Dhooopna Churna was mentioned in "Hasthasara Aushada Yoga Samgraha". This recipe belongs to Godamunne Tradition of Sri Lankan traditional medicine.

Drug preparation:

All the ingredients were identified and authenticated by the Department of Dravyaguna, Faculty of Indigenous Medicine, GWUIM, Sri Lanka. It was prepared according to Churna Paribhasha [6].
Microbial culture preparation
The antibacterial activity of each samples was tested against *Staphylococcus aureus* (ATCC 25923) using the spread plate method [7] (Qualitative). *Staphylococcus aureus* (ATCC 25923) was grown in a separate plate from a stock culture. A single colony was drawn with a sterile wire loop and dissolved in sterile nutrient broth. This was incubated overnight at 37ºC to prepare a broth culture of *Staphylococcus aureus*.

After incubation, the culture was adjusted by adding sterilized peptone water until the turbidity matched that of a McFarland 0.5 (10^6-10^8 cells/ml) standard [8].

Antibacterial susceptibility testing
The agar well diffusion method was performed to assess the susceptibility of bacteria against *karna dhoopana churna*. The turbidity adjusted bacterial culture (100µL) was pipetted out onto Mueller-Hinton Agar plates [9]. Then the inoculum was spread over the agar surface evenly using sterile cotton swab.

In vitro study

<table>
<thead>
<tr>
<th>Test Procedure</th>
<th>Bacterial Growth (+/-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control 01</td>
<td>Culture without fumigation</td>
</tr>
<tr>
<td>Control 02</td>
<td>Culture + Charcoal fumigation – 30 min</td>
</tr>
<tr>
<td>Test 01</td>
<td>Culture + Charcoal + Drug fumigation – 10 min</td>
</tr>
<tr>
<td>Test 02</td>
<td>Culture + Charcoal + Drug fumigation – 30 min</td>
</tr>
</tbody>
</table>

TABLE 2: Observation & Results

TABLE 1: Ingredients of Dhoopana Yoga

<table>
<thead>
<tr>
<th>Sanskrit Name</th>
<th>Scientific Name</th>
<th>Part used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punarnava</td>
<td>Boerhavia diffusa</td>
<td>Roots</td>
</tr>
<tr>
<td>Apamarga</td>
<td>Achyranthes aspera</td>
<td>Roots</td>
</tr>
<tr>
<td>Devadara</td>
<td>Cendrus deodare</td>
<td>Stem</td>
</tr>
<tr>
<td>Vacha</td>
<td>Acorus calamus</td>
<td>Rhizome</td>
</tr>
<tr>
<td>Sarshapa</td>
<td>Brassica campestris</td>
<td>Seeds</td>
</tr>
<tr>
<td>Nimba</td>
<td>Azadirachta indica</td>
<td>Tender leaves</td>
</tr>
<tr>
<td>Rasona</td>
<td>Allium sativum</td>
<td>Dried cover of fruit</td>
</tr>
</tbody>
</table>

Equal quantity of each ingredient in fine powders have been mixed well and prepared.

Karna Dhoopana Procedure

Method of Fumigation

Test 01
The culture plate was kept in a fumigation box and fumigated by using *Karna Dhoopana* drug until 10 minutes. Then the plate was incubated at 37ºC/24 hours.

Control 01
The pure culture plate was kept in the incubator (at 37ºC/24 hours) without smoke.

Test 02
The procedure was adopted as in the test 01 and fumigation time was extended up to 30 minutes.

Control 02
The culture plate was kept in fumigation box and fumigated by using only charcoal fumes until 30 minutes. (Without *Karna Dhoopana Churna*). Each test was triplicated.
EVIDENCES FROM MODERN LITERATURE TO SUPPORT THE CLAIM OF ANTI-BACTERIAL ACTIVITY OF KARNA DHOOPANA YOGA AGAINST STAPHYLOCOCCUS AUREUS

Priya et al. [10] confirmed that methanol and aqueous extracts of Boerhavia diffusa stem and root showed high therapeutic activity due to the presence of potential phytochemicals such as flavonoids, diterpenoids, alkaloids, tannin and saponins and also its anti-inflammatory potential was observed through several studies. Boerhavia diffusa is an important plant in an inflammatory process therefore, in an indigenous literature it is called “Sothaghni”, which means alleviation of inflammation. Therefore, it is widely included in several Ayurveda formulations as an ingredient. Several studies have been reported in which leaves and roots were either used locally or orally to produce promising results such as wound healing and anti-inflammatory potentials due to the presence of liriodendrin, quercetin and kaempferol [11]. Further studies done by Umamaheswari et al. [12] on various extracts of Boerhavia diffusa against gram positive and gram-negative microbes confirmed its highest antimicrobial activity.

Naidu et al. [13] work also confirmed the largest zone of inhibition by methanol, chloroform and n-hexane extracts of whole plant of Achyranthes aspera to be against Staphylococcus aureus, Bacillus subtilis, Salmonella typhi and Escherichia coli while positive control of ciprofloxacin and Cotrimoxazole. In another study, water extract of Cedrus deodara showed sensitive inhibition against Staphylococcus aureus, reportedly proposed as an alternative source for the treatment of bacterial infections [14].

The phytochemical screening of Cedrus deodara leaf parts showed the presence of flavonoids, alkaloids, tannins and saponins, while the stem wood of the plant lignin mixture consisted of wokstromal, matairesol, benzylbutyrolactol, cedeadarin, dihydromyricetin, cedrin, cedrinoside and isohimachalone [15].

Dalal et al. [16] investigated the antibacterial susceptibility of S. aureus, S. epidermidis and Pseudomonas aeruginosa to the Brassica campestris plant extracts using agar well diffusion method. The overall results confirmed that B. campestris demonstrated an appreciable antibacterial activity [14]. The phytochemical screening revealed the presence of saponins (12.82%), alkaloids (20.50%), flavonoids (6.57%), glycosides (20.01%), reducing sugar (5.56%), phlobatansins (15.05%) and volatile oil (25.13%) in the aqueous extract of Brassica [17].

Several studies have reported the antimicrobial activity of Acorus calamus roots, rhizome and essential oils; with rhizome and leaf extracts predominantly possessing antifungal and anti-yeast activities except against E. coli [18]. MacGaw et al. [19] reported that ethyl acetate was the best solvent for extraction of active ingredients (α and β-asarone) from rhizome and leaves of Acorus calamus. This study further established that the α and β-asarones found in leaf, roots and rhizome tissues are responsible for all the antimicrobial activities of Acorus calamus. In addition, Kumar et al. [20] in their study on Acorus calamus revealed 10 different active phytocomponents. Among these, alkaloids, Palmitic and Linoleic acids are the three important components identified as responsible for antimicrobial, anti-inflammatory and antioxidant activities.

Vinoth et al. [21] identified the antibacterial activity of ethanol, acetone and methanol extracts of Azadirachta indica. It was observed that ethanol extract exerted 19mm of maximum zone of inhibition, while acetone and methanol extracts exerted 18mm and 12mm, respectively against Staphylococcus aureus. Phytochemical analysis of same study investigated and confirmed the presence of alkaloids, tannins, flavonoids, terpenoids, saponins and glycosides, which are responsible for antimicrobial, anti-inflammatory and wound healing activities.

EL- Mahmood [22] observed in his study Staphylococcus aureus was most susceptible to the active ingredients present in garlic. It had zones of growth inhibition diameters of 28mm in water extract, 24mm in ethanol and 23mm in chloroform extracts.

Phytochemical studies of Allium sativum [23] showed the presence of carbohydrates, reducing sugars, lipids, flavonoids, ketones, alkaloid, steroids and triterpenes under water and ethanol extraction, while acetone extraction did not yield alkaloids, steroids and triterpenes. Alkaloids possess analgesic, antibacterial and antispasmodic effects.

All these scientific evidences supported and confirmed each of these actions of individual herbs synergistically leading to potential antibacterial activity of karna dhoopana yoga against Staphylococcus aureus.

DISCUSSION

The disease Puti karna can be correlated with CSOM due to the similarities of its symptoms. CSOM is commonly seen in the society as an exigent problem due to reappearance and resistance to therapy. Treatment recommendations have included local debridement, local and systemic antimicrobial agents.
Sometimes, it is a challenging disease because of its long-term treatment and follow up, yet its recurrence rate remains high.

While considering the pharmacodynamics of karma dhoopana karma, it is predominant with katu, tikita rasa, laghu, tikshna, raksha guna, ushna vrya, katu vipaka with tridosa shamaka especially kapta pitta samona properties. In addition to that, ingredients of karma dhoopana yoga has shothahara (anti-inflammatory), krimighna (antimicrobial), vrana shodhana (wound cleansing), vrana ropana (wound healing) and putihara (pus removal) actions make the middle ear cavity and mastoid structure aseptic and dry. The scientific evidences confirmed by previous studies significantly proved the pharmacological actions mentioned in Ayurveda texts on ingredients of Karna Dhoopana Yoga.

CONCLUSION
Puti karna is a chronic condition which causes a long-term suffering to the individual. This chronicity can be broken down through the dhoopana karma. In the present era, dhoopana karma can occupy a major position as a disinfectant as it is eco-friendly and comparatively cheaper [24]. This local treatment is more successful than systemic administration as it treats the disease effectively. Therefore, in vitro antimicrobial study proved that the fumigation for 30 minutes has a bactericidal effect on Staphylococcus aureus (ACTT 25923). This could be due to the bactericidal components present in the medicinal fumes. Also, according to this study, duration of Karna Dhoopana is an important factor, as well as the temperature of the fumes. This did not produce any side effects in the ear as the temperature is approximately equal to the room temperature.

Finally, the clinical effectiveness of Karna Dhoopana without any of the reported complications after treatment further confirmed its scientific basis. Karna dhoopana is one of the best local therapies, which is beneficial for discharging ear cases like puti karna, karna srava and krimi karna [25],

SOURCE OF FUNDING
None declared

CONFLICT OF INTEREST
None declared

ACKNOWLEDGEMENT
Authors acknowledge Mrs. E.D.C. Karunarathne and Mr. A.D.H. Sudesh, technical officers of central laboratory of Gampaha Wickramarachchi University of Indigenous Medicine, Sri Lanka, for their technical support given to complete this work successfully.

REFERENCES

