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ABSTRACT 
The application of evolutionary optimization algorithms in problem solving is currently gaining wide 
popularity. Use of Differential Evolution (DE) algorithm in obtaining analytically approximate solution of 
unstable second–order initial value Ordinary Differential Equation (ODE) is presented in this work. The 
methodology involves solving an associated problem of optimization with constrains to get an analytically 
approximate solution for the ODE under consideration. Three test cases were used to demonstrate the 
efficiency of our method. In comparison with other methods discussed in the literature, our method gave 
significant improvement on the accuracy of the obtained results.   
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INTRODUCTION  
Several numerical methods exist for obtaining 
approximate solutions of different classes of ODEs [8, 12]. 
For many of these methods however, accumulated errors 
give impulse in the unstable term, hence, they are usually 
less efficient when applied to unstable ODEs [7]. To tackle 
this challenge, one direction of interest lies in applying 
evolutionary optimization techniques. This approach 
requires that the ODE be formed as an optimization 
problem and then solved using some evolutionary 
algorithms [1, 2, 11]. The author in [9] obtained 
approximate solutions of first–order initial value problems 
by combining collocation method together with genetic 
algorithms. By combining Nelder–Mead method together 
with genetic algorithm, the authors in [6, 10] solved 
second–order initial value problems. Neural network was 
introduced in [2] to obtain approximate solution. Authors 
in [1] proposed the use of genetic algorithm with 
continuity to get solution of two–point second–order ODE. 
In [11, 3], the authors, respectively applied differential 
evolution algorithm to get approximate solutions of 
u^''+p(t)u^'+q(t)y=r(t) and u^''=f(t,u); u(a)=η_1;  
u(b)=η_2. Stiff systems of first–order ODEs were solved in 
[4] using differential evolution algorithm. Approximate 
solutions of problem with singularities were obtained 
using the Nelder–Mead algorithm in [5]. In this research 
work, the algorithm of differential evolution was 
implemented to obtain approximate analytical solution of 
unstable second–order initial value ODE. Differential 
evolution is one of the commonly used algorithms of the 
family of evolutionary computing.  
 
 

 
 
Unlike its counterparts, it can conveniently handle 
nonlinear and non–differentiable multi–dimensional 
objective functions, while requiring very few control 
parameters. With these characteristics, it becomes very 
easy and more practical to use. An overview of the 
algorithm is described in [13] and details can be found in 
many standard texts. 
 
PROPOSED METHOD 
Consider the unstable second–order ODE  

 
u′′ = f(t, u, u′),    u(t0) = u0, u

′(t0) = u0
′     t ∈ [t0, b].  

 
(2.1) 

 
This work assume the solution of Eq. (2.1) can be 
expressed as  

 

u(t) = ∑ki=0 ξit
i + ∑2j=1 αje

ωjt,    k ∈ ℤ+ (2.2) 

 
where ξi, α1, α2, ω1, ω2 are real constants whose values are 
to be determined by our proposed approach. Substituting 
Eq. (2.2) together with its derivatives into Eq. (2.1) results 
in  
 
∑ki=2 i(i − 1)ξit

i−2 +∑2j=1 αjωj
2eωjt = f(t, u, u′) (2.3) 

 
Now, considering the initial conditions, we have the 
constraints that  
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[∑ki=0 ξit
i + ∑2j=1 αje

ωjt]
t=t0

= u0,

[∑ki=1 iξit
i−1 + ∑2j=1 αjβje

βjt]
t=t0

= u0
′
} (2.4) 

  
At each node point tn, we require that  

ℰn(t) = [∑
k
i=2 i(i − 1)ξit

i−2 + ∑2j=1 αjωj
2eωjt −

f(t, u, u′)]
t=tn

≈ 0                                                                  (2.5) 

 
To solve the above problem, we need to find the set 
{ξi, αj, ωj|i = 0(1)k, j = 1,2}, which minimizes the sum of 

square of the error at each node point given by  
 

 ∑Nn=1 ℰn
2(t) (2.6) 

 

where N =
b−t0

h
 and h is the step–length. We now 

formulate the problem as an optimization problem in the 
following way:  

 
Minimize:     ∑Nn=1 ℰn

2(t)

Subject  to:     [∑ki=0 ξit
i +∑2j=1 ωje

βjt]
t=t0

= u0,

    [∑ki=1 iξit
i−1 + ∑2j=1 αjβje

βjt]
t=t0

= u0
′
}
 

 

  

 
(2.7) 

 
We shall now use the DE algorithm to obtain real 
constants {ξi, αj, ωj|i = 0(1)k, j = 1,2}  which optimizes 

Eq. (minimizer). Our proposed solution shall be referred 
to as: "Differential Evolution for Unstable ODEs 
(DEUODEs)". 

 
TEST CASES 
Here, we implement our scheme on three test cases. To 
demonstrate the accuracy and efficiency of our proposed 
scheme, we compare our results with those produced by 
the well–known classical Runge-Kutta Nystrom scheme.  
 
 
 

For each of the considered cases, comparison of the 
maximum absolute errors together with the execution–
time are presented. The default values used in the 
implementation of the DE algorithm on the test cases are 
given in Table 1.   
 

TABLE  1:   DE parameter values used  
in the implementation 

 

  Parameter name   Values  

 Cross Probability   0.5  

 Initial Points   Automatic  

 Penalty Function   Automatic  

 Post Process   True  

 Random Seed   0  

 Scaling Factor   0.7  

 Search Points   All  

 Tolerance   0.000001  
 

A "10th Generation, Core i7 Intel" processor computer was 
used for the computations carried out in this section. 

 

Problem 1 
Consider the unstable ODE  
u′′(t) − 10u′(t) − 11u(t) = 0. (3.1) 
 
Eq. (3.1) has the theoretical solution  
u(t) = C1exp(11t) + C2exp(−t). (3.2) 
 

In this case, the accumulated errors give impulse in the 
unstable term, exp(11t), hence it becomes tedious to find 
a numerical solution that will be an approximation of 
y(t) = exp(−t).  
To overcome this challenge, we choose k = 0 in Eq. (2.2) 
and solve Eq. (3.1) together with the initial conditions: 
u(0) = 1, u′(0) = −1. Using a steplength of h = 0.01, we 
use the DE algorithm to obtain values of the associated real 
constants as given in Table 2. 

 
TABLE  2:   Estimated method coefficient values for Problem 1 

 

Constants Values 

ξ0 −
58596483280504527

14087903090174553893634026852234094833510158
 

α1 
335412

549462448726431007476042901793
 

α2 
143962183560387886485590172154

143962183560387886485590259435
 

ω1 −
707787669622900643628733952243

783173937953213712247797360578
 

ω2 −
2526056395966082493073880999103

2526056395966082493073880861180
 

 
The analytical approximate solution is given as Eq. (3.3). 

 

u(t) = −
58596483280504527

14087903090174553893634026852234094833510158
+

    
335412

549462448726431007476042901793
exp (−

707787669622900643628733952243

783173937953213712247797360578
t) +

    
143962183560387886485590172154

143962183560387886485590259435
exp (−

2526056395966082493073880999103

2526056395966082493073880861180
t)

 (3.3) 
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Table 3 shows the absolute maximum error and execution time (seconds) of our technique compared with the classical 
Runge–Kutta Nystrom method for varying steplength. 

  
TABLE  3: Absolute maximum error and execution-time in seconds for Problem 3.1 with step-size h = 2−i, i = 3(1)9 

  
   Absolute Maximum Error Execution-Time (Seconds) 

 i  Runge-Kutta Nystrom Method DEUODEs Runge-Kutta Nystrom Method DEUODEs 

 3  5.703708E-01 1.110223E-16 4.687500E-03 0.000000 

 4  5.384612E-02 1.110223E-16 7.812500E-03 0.000000 

 5  3.966185E-03 1.110223E-16 1.562500E-02 0.000000 

 6  2.671148E-04 1.110223E-16 2.968750E-02 1.562500E-03 

 7  1.730622E-05 1.110223E-16 5.937500E-02 1.562500E-03 

 8  1.100942E-06 1.110223E-16 1.234375E-01 3.125000E-03 

 9  6.941755E-08 1.110223E-16 2.515625E-01 6.250000E-03 

Problem 2 
The second case is given as  
u′′(t) = 100u(t).                                                                  (3.4) 
 
Eq. (3.4) has the theoretical solution  
u(t) = C1exp(10t) + C2exp(−10t). (3.5)  
 
 
 

However, Eq. (3.4) with the initial conditions: 
 u(0) = 1, u′(0) = −10 has its solution as  
 
u(t) = exp(−10t).                                                                  (3.6) 
 
Again, the accumulated errors gave impulse in the unstable 
term, exp(10t)  in Eq. (3.5). Applying the DE algorithm 
again but choosing k = 1  in Eq. (2.2), values of the 
associated real constants are given in Table 4. 

  
TABLE  4: Estimated method coefficient values for Problem 2 

  
  Constants   Values  

 ξ0  
−

1866130124028508

27968489541978442147822524598346085350438563
 

 ξ1  5490012867360566

88055038859759348231995436075796820268469007
 

 α1  235

2033336901794996078850609459979
 

 α2  593642189642882704140492449808

593642189642882704140492449837
 

 ω1  
−
1864702798268403069139083489522

778691675612344064906052135217
 

 ω2  
−
3981513280893406487103789665829

398151328089340648710378966572
 

  
   

The analytically approximate solution is given as Eq. (3.7).  
 
 

u(t) = −
1866130124028508

27968489541978442147822524598346085350438563
+

=
5490012867360566

88055038859759348231995436075796820268469007
t +

    
235

2033336901794996078850609459979
exp (−

1864702798268403069139083489522

778691675612344064906052135217
t) +

    
593642189642882704140492449808

593642189642882704140492449837
exp (−

3981513280893406487103789665829

398151328089340648710378966572
t)

 (3.7) 

 
 
The absolute maximum error and execution time (seconds) of the classical Runge–Kutta Nystrom and our technique in 
comparison for different step–lengths is shown in Table 5. 
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TABLE  5: Absolute maximum error and execution-time in seconds for Problem 3.2 with step-size h = 2−i, i = 3(1)9 
  

 Absolute Maximum Error Execution-Time (Seconds) 

i 
Runge-Kutta Nystrom 

Method 
DEUODEs 

Runge-Kutta Nystrom 
Method 

DEUODEs 

3 1.054952E02 5.551115E-17 6.250000E-03 0.000000 

4 8.181046E00 1.110223E-16 7.812500E-03 0.000000 

5 5.380984E-01 1.110223E-16 1.562500E-02 0.000000 

6 3.405028E-02 1.110223E-16 3.125000E-02 3.125000E-03 

7 2.134674E-03 1.110223E-16 6.406250E-02 1.562500E-03 

8 1.335191E-04 1.110223E-16 1.515625E-01 3.125000E-03 

9 8.34654E-06 1.110223E-16 3.093750E-01 2.187500E-02 

 
Problem 3 
The third case considered is given as  
u′′(t) = −u′(t) + 2u(t). (3.8) 
  
The theoretical solution of Eq. (problem3) is given as  
u(t) = C1exp(−2t) + C2exp(t). (3.9) 
 
 
 

Here, Eq. (3.8) has the initial conditions: 
 u(0) = 1, u′(0) = 1 and the exact solution also given as  
 
u(t) = exp(t).                                                               (3.10) 
 
Similarly, the unstable term, exp(−2t)  in Eq. (3.9) has 
impulse of accumulated errors. Here, we apply the DE 
algorithm again but choose k = 0 in Eq. (2.2), values of the 
associated real constants are given in Table 6.  

TABLE  6:   Estimated method coefficient values for Problem 3 
  

Constants Values 

ξ0 
13976606731205971

45451913496634381658353114106888650226127076
 

α1 −
8

16851396780956847685004106673
 

α2 
2086884460410152910755697960209

2086884460410152910755697959860
 

ω1 
294325197103201346344485627539

1257757380242924465584677243692
 

ω2 
88417578170623964355973712478

88417578170623964355973712483
 

  

  The analytically approximate solution is hence given as Eq. (3.11).  
 

u(t) =
13976606731205971

45451913496634381658353114106888650226127076
+

    −
8

16851396780956847685004106673
exp (

294325197103201346344485627539

1257757380242924465584677243692
t) +

    
2086884460410152910755697960209

2086884460410152910755697959860
exp (

88417578170623964355973712478

88417578170623964355973712483
t)

 (3.11) 

 
Again, Table 7 shows the absolute maximum error and execution time (seconds) of our technique compared with the 
classical Runge–Kutta different step–length. 

 

TABLE  7: Absolute maximum error and execution-time in seconds for Problem 3.3 with step-size h = 2−i, i = 3(1)9 
  

 Absolute Maximum Error Execution-Time (Seconds) 

i Runge-Kutta Nystrom Method DEUODEs Runge-Kutta Nystrom Method DEUODEs 

3 1.245609E-05 0.000000 3.125000E-03 0.000000 

4 7.977266E-07 0.000000 7.812500E-03 0.000000 

5 5.044025E-08 4.440892E-16 1.406250E-02 1.562500E-03 

6 3.170410E-09 4.440892E-16 2.968750E-02 0.000000 

7 1.987064E-10 4.440892E-16 6.093750E-02 0.000000 

8 1.243761E-11 4.440892E-16 1.171875E-01 4.687500E-03 

9 7.780443E-13 8.881784E-16 2.390625E-01 7.812500E-03 
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CONCLUSION 
We conclude here that we have been able to obtain 
analytically approximate solutions of unstable ODEs using 
differential evolution algorithm. Compared to the Runge–
Kutta Nystrom method, the accuracy and efficiency of our 
approach is clearly demonstrated with the three test cases 
considered. In future works, application of other 
evolutionary techniques can be considered. 
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