
292 Available Online at www.ijscia.com | Volume 4 | Issue 3 | May - Jun 2023

Dynamic Protocol Blockchain for
Practical Byzantine Fault Tolerance Consensus

Ali Asad Sarfraz1, Shiren Ye1*, Tianshu CheneyPen Zhao1,
Muhammad Usama Raza2, and Tianshu Chen1

1Aliyun School of Big Data, Changzhou University, Changzhou 213164, China

2School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China

E-mail: Aazi7777@gmail.com; yes@cczu.edu.cn; zhaopeng@cczu.edu.cn;
usama132741.raza@gmail.com; tensoulchen@gmail.com

*Corresponding author details: Shiren Ye; yes@cczu.edu.cn

ABSTRACT
This work details the byzantine fault-tolerant protocols that dynamically allow replicas to join and exit.
Byzantine fault-tolerant (BFT) protocols and the blockchain now play an essential role in achieving consensus.
There are numerous drawbacks to PBFT, despite its multiple positives. The first thing to note is that it runs in
an environment completely isolated from the rest of the world. The entire system must be shut down before
any nodes can be added or removed. Second, it ensures liveness and safety if no more than (n-1)/3 out of total
n replicas, PBFT takes no action to cope with ineffective or malicious counterparts. This is bad for the system
and will lead to its eventual failure. These flaws have far-reaching consequences in real life. The Randomization
PBFT is an alternative way of dealing with these issues. In recent decades, as computer technology has
advanced, so has our reliance on the products, services, and capabilities that computers provide.

Keywords: DRBFT; PBFT; protocol; Blockchain; Byzantine fault tolerance; Dynamic PBTF

INTRODUCTION
Economic interests are becoming more prominent, which
increases our vulnerability to system failures. Even if these
systems are being attacked maliciously or if there are
technical flaws, we would expect them to function
correctly [1][2]. Researchers focus a lot of their efforts on
replication to build reliable and protected computer
systems. Replication research has focused mainly on
strategies that only accept harmless mistakes. Crashing is
considered the worst conceivable behavior for replications
and nodes by these techniques, which assume that some
steps are skipped entirely. Because malicious assaults,
poor software, and human mistakes can occur in the real
world, it is impossible to rely on the earlier premise. These
flawed reasons may lead to clones behaving erratically [3].

Numerous hours have been devoted to research that relies
on Byzantine mistakes. Tolerance for Byzantine faults has
been explained in several articles. The primary PBTF
Phases are shown in Figure 1.

FIGURE 1: PBFT phases.

Replicating state machines using PBFT is a method. If at

least
1

()
3

n−
 the total number of replicas has been mistaken,

it has liveliness and safety qualities. If the proportion of
malfunctioning nodes is lower than the security inception,
then control, software problems, or operator blunders
cannot cause a system crash [4]. Even though PBFT has
numerous advantages, there are significant disadvantages
to using it. Starting with a wholly confined arrangement,
any nodes that seek to join or depart the network must

pause the system as a whole. If most b
1

()
3

n−
 of n total

replicas are defective, PBFT guarantees liveness and safety;
nevertheless, it does not take any precautions to deal with
malicious representations, which are detrimental to the
system and will eventually cause it to crash. PBFT, on the
other hand, does not specify a standard for determining
whether or not a replica is active.

Many people in the system prefer to rely on others and
avoid their responsibilities to save money, which is terrible
for the system's security. It's hardly surprising that these
flaws are unpleasant in practice. The Dynamic PBFT is an
alternative way of dealing with these issues [5].

Many of its advantages may be traced back to its
predecessor, which is why it is called randomization PBFT.
Our protocol has the same amount of liveliness and security
as PBFT. Like random PBFT, it is a protocol based on week
synchrony conventions, which is a necessary attribute to
have to make it work over the Internet. The moniker
"Dynamic PBFT" recommends replicas, and nodes can join
or leave the consensus network without downtime.

International Journal of Scientific Advances

ISSN: 2708-7972

Volume: 4 | Issue: 3 | May – Jun 2023 Available Online: www.ijscia.com

DOI: 10.51542/ijscia.v4i3.1

http://www.ijscia.com/
www.ijscia.com

293 Available Online at www.ijscia.com | Volume 4 | Issue 3 | May-Jun 2023

International Journal of Scientific Advances ISSN: 2708-7972

Our protocol has the same amount of liveliness and
security as PBFT. Like random PBFT, it is a protocol based
on week synchrony conventions, which is a necessary
attribute to have to make it work over the Internet. The
moniker "Dynamic PBFT" recommends replicas, and nodes
can join or leave the consensus network without
downtime. Because the network does not need to be taken
offline, this is an option. Aside from that, it makes the
system more resilient by allowing the removal of malicious
nodes and nodes that have been down for an extended
period [6]. A brand-new concept, the Participation Degree,
is also part of our procedure. A node's level of activity can
be gauged using this metric. Increasing the cost of avoiding
consensus can successfully increase the system's security.
The cumulative cost of participating in the consensus
process is one way to do this. Adding them to a blocklist
raises the malicious price nodes must pay for their actions,
making being a malicious node more expensive.

THE BASIC IDEA OF PBFT
Tolerating Byzantine faults in a distributed network is the
primary objective of this research, which focuses primarily
on the construction of workable simulated state machines
founded on PBFT. The fundamental concept of PBFT must
be presented in this part to comprehend Dynamic PBFT
better. The Practical Byzantine Fault Tree (PBFT) was the
first clarification of Byzantine faults in a synchronous
situation like the Internet that was both practical and
effective.

Even though there are at most
1

()
3

n−
flawed replicas out of a

total of n replicas that are fixed and well-defined, PBFT can
assure that the input requirements projected by a client will
be processed in a similar order by at least all direct replicas
and that these replicas will reoccurrence the correct and
consistent consequences to the client. PBFT uses two
methods to serialize requests to realize the qualities listed
above. These methods are as follows: Primary-Backup and
Quorum Replication can be found here.

Distributed system architectures typically use this
approach. Views are the primary idea of PBFT, and they
refer to the numerous configurations into which the copies
can be put. For each perspective, a primary and backup
copy is selected for each perspective. Replicas are assigned
sequential numbers using a numeric value in the range [0,
n-1], known as a node ID. Views are also numbered
sequentially [7].

A. The Quorum's Replica
The quorum mechanism is generally used in dispersed
systems to ensure data termination and consistency.
Mathematics’ fundamental concept may be traced to this
simple idea: pigeonholes. Most nodes must be present in a
distributed system before a transaction can proceed,
known as a "quorum." One of the most important aspects
of having a quorum is that it must be easily accessible.

• (Intersection) Every pair of quorums has at least one

standard and correct replica. Quorums are always
available that are free of false representations.

• (Availability) For example, ensure the distributed

system's message has been appropriately saved if the
message is sent to all members of the quorum and all
members respond by acknowledging the message. As
long as all of the quorum members react to the replica's
communication, it is considered a success. In a
distributed classification with n replicas, PBFT
undertakes that n equals 3f + 1, where fi is the
maximum number of models with errors. PBFT uses
this assumption [8].

There must be at least 2f + 1 clone for a quorum to be
established. According to another idea known as weak
certificates, if at least f + 1 copies of the identical message
are stored, there must be further than one benign replica
also accumulating the news.

B. Normal Case Operation

FIGURE 2: Normal Case Operation.

Figure 2 shows a typical PBFT scenario in which Node 0
represents the primary Node free of errors, and Node 3
illustrates an error node. The client will broadcast requests
to all replicas with a timestamp to start. Once the
recommendations have been received, the main will
continue the procedure following a three-primary phase
protocol. Pre-prepare, prepare, and commit are the steps
in this process; client requests can be atomically broadcast
to replicas. Replicas are responsible for completing all
requests in the order specified by the primary and
returning the results to clients [9]. F+1 answers from
distinct duplicates with the same effect and time stamp are
waited for by the client. An invalid certificate is generated,
ensuring that at least one accurate replica has responded
to a result. As a result, the consumer has a strong basis for
believing that the results are reliable and credible.

C. Checkpoints
The pre-preparation phase is the first step of the three-
phase process. A pre-prepared message is sent to all
replicas, and the primary advises the order in which
requests should be processed. After receiving the pre-
prepared message, each replication immediately confirms
the proposal's authenticity by adding communication to its
log and sending a prepared communication for others to
show that it has received and recognized the proposal and
is ready for deployment [10]. The replica will enter the
preparation phase when other clones have delivered
prepared messages. This case is published with a commit
message and moved on to the commit phase once it has
gathered a sufficient number of scheduled messages
identical to the pre-prepared note. It accumulates 2f + 1
commit messages to ensure that enough copies have
recorded the primary's proposal and that it can be
implemented reliably.

Every legitimate three-phase communication provided to a
node must be documented separately. PBFT creates a
technique for removing the three-phase notifications of
completed requests from the log. A checkpoint is a state that
is established when all of the Krequests are executed, and
replicas will record it as these requests are completed [11].

Creating a checkpoint causes the replica to broadcast a
message to the entire cluster, which logs all subsequent
checkpoint messages. A checkpoint can be proven correct
if 2(f + 1) identical checkpoint from distinct object replicas
is collected. In the case of stable checkpoints, replicas can
clean their logs of any three-phase messages with a
sequence number lower than or equal to the checkpoint’s
correctness proof [12].

http://www.ijscia.com/

294 Available Online at www.ijscia.com | Volume 4 | Issue 3 | May-Jun 2023

International Journal of Scientific Advances ISSN: 2708-7972

D. View change
The three-phase protocol indicates that the PBFT relies on
a primary node regarded as benign to multicast a pre-
prepared message and begin a round. However, the main
might also serve as a valuable target for an attack. PBFT
devised a method known as view-change to ensure
liveness in the event of a damaged primary. As soon as the
primary becomes corrupted or stops working, the backups
will inform the next accessible Node of their desire to
switch the primary [13][14]. An aberrant main can be
discovered and changed by a quorum of 2(f+1) copies, at
which point the subsequent primary takes control.

SYSTEM MODEL
This Section will review the system entities' different
functions and give an overview of the Dynamic PBFT.

A. Aspects of the System
Our algorithm assumes that the nodes are connected via a
network in an asynchronous distributed system.
Depending on the type of Node, the system can be divided
into two groups: CA Replica and Node.

Two replica nodes receive client requests, perform
consensus procedures like the three-phase protocol, and
deliver the correct results back to the clients [15].
Assumptions are made to assure that the system will work

properly, as shown below. Bound
1

()
3

n
f

−
= is a constraint

on the number of defective duplicates, which assume to be
true. Our protocol uses Node CA to investigate and
differentiate between all options, making it far easier to
satisfy this assumption than the PBFT, which inflexibly
makes this assumption. It is possible to distinguish
between primary and backup replicas based on the
purposes for which they are used. The primary Node is
responsible for sorting and communicating with the
backup nodes during each iteration of the consensus
process [16]. For the PBFT to work, it relies on a closed
network of well-defined nodes. Assuming that all replicas
in the system have already preserved public keys, this is
how it's possible to achieve.

No new replicas can enter or exit the network unless the
PBFT system is stopped and the configuration is amended.
Practically, no one can tolerate this strategy in practice.
According to Assumption 2, a single node keeps track of all
the replicas' data to enable the consensus system's
dynamic property. Configuring a node in the system to
provide security services is standard practice. For
instance, IBM created "Membersrvc" specifically for usage
in Hyper Ledger Fabric. (Assumption 2) Let's assume that
the Dynamic PBFT system uses a security service provider
called Node CA. The Node CA provides three goals similarly
but not identical to the conventional CA. A company's
position in the industry and the authenticity of the identity
information supplied to Node CA determine whether or not
a company is allowed to register and become a part of the
system.

The system's Node CA is responsible for granting and
revoking certificates for replicas [17]. The Node Certificate
Authority maintains a list of node IDs, IP addresses, public
keys, and the condition of each Node. Replicas have total
faith in the identification information contained in Node
CA. Replicas should not commence the Network Dynamic
Consensus protocol based solely on the information
provided by Node CA to prevent an undue reliance on Node
CA. Several steps involve leaving a consensus network,
such as notifying the other replicas of your request and
filing an application with Node CA to revoke your
certificate [18].

Once Nodes receives an exit request from Node j and a CRL
from Node CA, it will only begin the EXIT protocol. Node j
certificate has been revoked, and that information will be
included in the CRL.

B. System Flow Chart
Byzantine flaws are not an issue with our protocol because
it uses the three-phase approach PBFT uses to resolve
distributed consensus issues on Byzantine fault-infested
networks. On the other side, PBFT has specific fatal
weaknesses, such as the inability to handle dynamically
joining or leaving nodes and the lack of any mechanisms to
punish rogue nodes, whether they are primary or backups.
PBFT only uses the view-change protocol to hide the
harmful primary and imposes no penalties on it in the
process.

The sender's signature must be appended to every
message delivered through the NDC protocol. The digest of
a message is called mas D (m), and a message signed by
replicas I called mas D (m). A message digest is marked
instead of the complete statement and then added to the
original text [19]. Standard procedure has been in place for
a long time.

To avoid confusion, the remainder of this Section shall
refer to m||m I simply as m||m I. The NDC considers active
participation, active exit, passive exit, and passive exit of
evil primary and backup. Create different sub-protocols for
each use case for JOIN REQ, EXIT, PCLEAR REQ, and CLEAR
REQ. The three-phase protocol is suspended on all nodes
during these sub-protocols to make necessary adjustments
to the NDC system settings [20]. Our protocol will continue
to function normally if we follow Assumption 3. For
example (Assumption 3), Node CA will immediately
broadcast a JOIN message to all of the other nodes in the
system as soon as the candidate has successfully
registered.

DYNAMIC PBFT
PBFT is the initial practical Byzantine fault-tolerance
protocol that can achieve dynamic properties. Applicable
Byzantine Fault-Tolerance Protocol is known as PBFT.

A. Candidate Pool
Because dynamic PBFT allows nodes to enter and exit the
graph at any time, the number of nodes in the system is
never constant. The formula p = v cannot be used to select
the primary, as it does not consider other factors [21].

Table 1 contains the node information list each replica
must update and maintain, and the N-node CA following
our protocol. Each representation is identified by its
unique IP address, public key, and present state. A node
has three possible states: benign, absent, and malevolent.
If a node continues to contribute to the establishment of
the consensus and is eligible to be declared a suitable node,
it is considered benign. A node's status should default be
set to Benign when it is formed. Node CA and other replicas
will be absent if a node actively leaves the network [22].

A node's state will be modified if other nodes in the
network judge it as doing evil or not functioning correctly.
A node like a Node 1 is designated as the primary Node
during the system's initialization process. Switching from
v to v + 1 and selecting a new primary is done when nodes
have to run the NDC protocol. Consider, for example, that
the primary Node in Table 1 is Node 1 and that the current
view is View NDC-enables replicas will transition to View
2 and designate the primary Node as t he second-to-last
Node, Node 2. In the first place, there are tables.

http://www.ijscia.com/

295 Available Online at www.ijscia.com | Volume 4 | Issue 3 | May-Jun 2023

International Journal of Scientific Advances ISSN: 2708-7972

TABLE 1: Node Information List.

Node ID IP PK State

1 192.168.10.1 1PK Benign

2 192.168.10.3 2PK Absent

3 192.168.10.5 3PK Evil

4 192.168.10.7 4PK Benign

Nodes 2 and 3 are not considered safe, bringing us to
number 4. Replicas will go back to the beginning of the list
if the current primary is positioned further down the list
than usual. An unusual situation has arisen here. In this
scenario, the recent primary is Node 4, and the list suggests
that Node 5 is safe; however, after some time has elapsed,
replicas learn that Node 5 is malicious. If Node 6 is deemed
benign, they will run the NDC protocol and make it the
principal Node.

B. Active Participation.
The first step is to have the new Node registered with the
Node CA, which is the first step. Node CA checks its data to
remove nodes with negative business ratings or criminal
history. Once the Node's identifying information is
confirmed authentic, it will be added to the end of the list
and given an appropriate identifier, such as j.
Communication is known as JOINREQ, IP, and P K j will
then be sent to all replicas to seek their participation in the
network. After receiving a join request, nodes in the
network, such as Nodes, will verify the signature [23].
Finally, they will match the join request's data to the data
saved at Node CA. “Node I will do the JOIN protocol, as
shown in Figure 3, if the validations are successful.

FIGURE 3: JOIN Req Protocol.

Node Protocol for Joining commences the process of
forming the JOIN consensus when the three-phase protocol
message is no longer sent and received. When a new
message is received, it sends a "JOIN" message to all of the
other nodes in the network that includes "his" (the
sequence number of Node I records' most recent stable
checkpoint) and a "Cis" (a series of " 2(f + 1) checkpoint
messages that prove the accuracy of s). P m contains a good
pre-prepared communication and 2(f + 1) matching
statements for each contact that was prepared at Node I
with a categorization number greater than h, where j is the
node id of the sender of the join request [24].

A message will be sent to all the replicas, including the new
node j, if the new primary collects 2(f + 1) valid JOIN
messages. V + 1, V, O, j p will be the message format for this
one. Use the essence of joining communications and the
senders' ID to simplify the communication complexity. O is
a set of pre-prepared messages calculated in two different
steps. Vis is a set of valid JOIN messages from 2(f + 1)
replicas. After determining the most recent stable
checkpoint in V, the primary p selects the sequence
number max-s with the highest value based on a V-
prepared message [25].

The primary generates a new pre-prepared message for
each sequence number that falls within the view v+ 1
minimum and maximum time limit.

As soon as a new primary sends out a new-view message,
Node does an audit to ensure that the signature is correct
and valid. It completes a calculation similar to the primary
to evaluate this. Every Node in the system has agreed to
Node j involvement up to this point. They add Node j
identity to the collection of node details that they already
have in their possession [26]. By way of example, have a
look at Node I communication with Node j: "JOIN-REPLY, v
+ 1, J P O, I i." Here P, O has a series of communications tied
to client requests so that Node j can handle these requests
in their new view the same way as the other messages.

Once Node j reaches a certain number of legitimate join-
reply messages, it will start participating in the consensus. A
node's exit can be classified as either active or passive,
depending on its occurrence. A dynamic entry is when a
node intentionally disconnects from the network for its
benefit. The process by which malicious nodes are removed
from the web by other nodes is referred to as "passive exit."
Nodes can actively depart the network using a protocol we'll
go through in the following few paragraphs.

If Node j decides to leave the network, it must first apply to
Node CA to have its certificate and any other necessary
information revoked. Afterward, it sends out an exit
request communication to all other replicas in the form of
EXIT REQ (j), IP (j), and P K (j). Another requirement is to
contribute to the three-phase protocol until it receives a
sufficient amount of departure reply messages from the
rest of the network. To ensure that all of the system's
nodes are aware of the revocation status of the Node j
certificate, the Node CA adds the certificate to its
Certificate Revocation List (CRL). The aspect of change
phases is depicted in the figure below.

FIGURE 4 : View Change And New View.

The state of these removed nodes is changed to Preoccupied
by Node CA upon the completion of multicasting CRL. After
collecting all the exit requests, Node keeps a local log of
them. When Node I receive a CRL, it only selects certificates
that have not yet expired from the CRL's list of credentials
[27]. After that, it scans its logs for similar exit requests and
adds the node IDs of those certificates to a set E. ' Node I will
initiate the EXIT operation if E is not empty, as depicted in
Figure 5.

FIGURE 5 : EXIT REQ and REPLY Protocol.

http://www.ijscia.com/

296 Available Online at www.ijscia.com | Volume 4 | Issue 3 | May-Jun 2023

International Journal of Scientific Advances ISSN: 2708-7972

To get things started, Node I multicasts an EXIT message to
all of its replicas. This message appears as follows: It's time
to get out of here. All images except the exit nodes will get
a multicast message titled "N EW V EIW" when the new
primary p has amassed two-and-a-half valid EXIT
messages. Upon getting a NEW - VIEW communication
from the new primary, Node, I first verify the signature's
validity before evaluating whether or not V, O, and E are
correct.

The network nodes have reached a consensus about
removing nodes like Node j. As a result, they update their
node information list to show that Node j is no longer
present. Afterward, all nodes communicate with Node j by
sending an exit-reply message, such as 'EXIT REPLY, v + 1,
j, I I'. At least one valid EXIT-REPLY message from
numerous copies of Node j indicates that it has successfully
exited the system and is now free to withdraw from the
consensus.

C. Passive Exit: primary source
Dynamic PBFT can tolerate a certain amount of wrong
copies, but any false documents should be avoided at all
costs. Our protocol removes faulty nodes from the system
and does not allow them to rejoin in the future, unlike
PBFT, which does not take any action to deal with them. As
a result, there will be no more network outages in the
future. Making it more difficult and expensive can lessen
clones' likelihood of bad conduct.

When the current primary fails to function or is malignant,
replicas begin a PCLEAR procedure to remove it from the
system. Restoring the regular operation of the network is
the result of this. The protocol is shown graphically in
Figure 6.

FIGURE 6 : PCLEAR REQ Protocol.

An initial message from Node I to other replicas reads: "P
CLEAR v + 1, h, C, P, and I," where I is the malicious main's
node ID. All other replicas receive a message called a NEW
VIEW, v + 1, V, O, z p when the new primary collects 2(f + 1)
valid PCLEAR messages; however, the primary Node was
previously used for nefarious reasons and is omitted. New
- VIEW message from the central and Node I checks to see
whether the signature is accurate and whether V, O, and z
I is suitable and valid is shown in Figure 6.

To date, every Node in the system has agreed on how to get
rid of the wrong main that has outlived its usefulness. In a
list of node information, modify the data of Node z into
Evil's current status. Followed by PCLEAR-REPLY
messages from all nodes like P CLEAR-REPLY messages
sent to the Node z and Node CA. It will become evil if the
Node CA receives more than one legitimate PCLEAR-
REPLY message from other nodes. To prevent these rogue
nodes from joining the system in the future, the Node CA
will add them to its block list.

In Passive Exit, Letter E, the Evil Backup Replicas can
quickly identify the properties of a main. There is no
objective benchmark to employ.

A mechanism has been devised to address this problem as
part of our protocol. As a first step, let's clarify the
following terms:

D. The Participation Level (PD)
It's a metric for gauging the activity level among the nodes
participating in the consensus process. PD is close to an
integer between 0 and 3. Every Node in the local network
maintains a list of the other nodes to record their actions.
The PD of a newly-created node is set to three. By joining
the consensus once, one copy will gain one point and lose
one point in PD (up to an overall maximum of three). A
backup node is considered faulty if its PD falls below zero.
Contribute meaningfully to the process of obtaining an
agreement. During a round of the three-phase protocol, if
a commit communication from Node j is reliable with the
majority 2(f+1), Node j is reflected to have successfully
entered consensus. Figure 7 shows that because no
replicas received the commit communication from Node 3
in this round, they lowered the PD of Node 3 by one in their
local list. This is because any of the copies has not received
the communication from Node 3.

To keep track of the number of replicas that join
consensus, Node I begin counting when a certificate is
received on a message with a sequence number of l-t.
Although network latency is taken into account, this still
occurs. Here's a digit or two. CLEAR protocol is initiated
when Node I learn that a sufficient number of nodes have
had their PDs reduced to zero, and the IDs of these nodes
are stored in the set Z.

FIGURE 7 : CLEAR REQ Protocol.

CLEAR, v + 1, h, C, P, Z, and I, where Z is a list of node IDs
whose PD will drop until it reaches 0, will be multicast to
other replicas by Node I. A multicast message with the
following contents is broadcast to all other
representations, save for the malicious nodes, when the
new primary collects 2(f + 1) valid Req CLEAR
communications [24[[25][26][27].

Thus far, all nodes in the system have achieved a consensus
for removing wicked nodes. In Z Evil's state was changed
in their node information list by altering the information of
the nodes. Nodes then transmit a CLEAR-REPLY message,
such as "CLEAR" REP LY, "v+1," "Z," "I" to wicked nodes, and
"Node CA" back. Any nodes receiving valid CLEAR-REPLY
messages from the Node CA server will have their state
changed to Evil. These malicious nodes have been added to
the Node CA's block list, which means they will no longer
be allowed to join the system.

A. Reply from the Customer
The client must contact the Node CA and obtain
information about the replicas when connecting to the
network for the first time or reconnecting after a
significant service disruption. Multicast queries to these
copies and waiting for their responses will be possible.
Node information has been updated, and the network's
current number of active nodes is known after running
NDC protocols [26][27][28].

http://www.ijscia.com/

297 Available Online at www.ijscia.com | Volume 4 | Issue 3 | May-Jun 2023

International Journal of Scientific Advances ISSN: 2708-7972

However, because the client did not participate in the
consensus, it has no idea how many nodes are currently
operational. Consequently, it is impossible to identify the
minimal number of reliable responses required to assure
that the outcome is accurate. There are two options.

The client consults Network Security (CNS) after receiving
a validated reply from a Dynamic PBFT network to
determine the number of node conditions is Benign.
Method 3 (CNS). When the customer obtains a third-party
service, N CA /3 + 1 reliable REPLY messages must be
received before calculating valid results.

Node j first registers at Node's CA's, then is sent into the
network, so Node's CA Node. In the Req CLEAR and Req
PCLEAR protocols, the wicked nodes are first sent out of
the network and then notified to s Node's CA. An exit node
instantly ends the three-phase protocol and begins
working on the EXIT consensus, resulting in Node CA = N
once it receives the CRL in the EXIT protocol. It is clear that
Node CA+1, and N/N/3+1, which can guarantee the
authenticity of the response, are the case.

New nodes are registered at Node CA; however, the join-
REQ message is not delivered to all replicas for an
extended period. Investigate this situation. In this case, N
may be decreased to N. Node CA is equivalent to /3 + 1N+
1 if Node CA exceeds 3N. As a result, the customer will
never be able to gather enough consistent responses. The
customer must check in with Node CA as soon as they
obtain a response while using this method. A load-
balanced cluster configuration of the Node CA may be
implemented to handle many concurrent users.

Once a network replica has authenticated the client's
request, it will select reproductions randomly from the list
of local nodes in the client's network. Then it asks these
copies about the active system's node number N c. The
client trusts these replicas and waits for N c /3 + 1
legitimate response before determining the right results if
most of these copies match the beginning percentage p and
send the similar N.

To carry out the quantitative analysis, we will presume
that n equals 10 and f equals 3. Table 2 below shows the
results. However, the likelihood did not rise linearly when
the number of trials increased, as seen in Table 2.
Furthermore, as p rises, Probe's value will probably
decrease [28][29][30]. After selecting five random replicas
to query, the client should wait until at least three
replications return consistent results.

TABLE 2: Prob With Dissimilar K and P.

K / P / Prob >1/3 =>2/3 >2/3

1 0.8 0.8 0.8

2 0.49 0.49 0.49

3 0.85 0.83 0.32

4 0.77 0.77 0.77

5 1 0.54 0.81

6 1 0.63 o.73

7 1 1 0.4

8 1 1 1

CORRECTNESS
Safety and liveliness are two areas in which our protocol
has been examined in this work. Safety is defined in this
study as all benign replicas will constantly on the sequence
numbers of requests committed locally.

In the three-phase technique, the Dynamic PBFT is just as
safe as the standard PBFT [31][32][33]. NDC protocol also
guarantees that benign replicas agree with the sequence of
local requests in different views. Node C protocol, the
following subjects will be discussed in the next series for
simplicity: only when Node I have put in the message does
prepare (m, v, and n) become true. Unless and until this is
the case, the statement is untrue.

2(f + 1) prepare messages from multiple nodes written in
its local log for the min view with the sequence number n
and a pre-prepared message for the min view. There is f +
1 benign replicas in a set, therefore, committed (m, v, n) is
only actual if that's the case.

For Node, I to have received 2f+ 1 commits from distinct
nodes that match the pre-prepared message form,
prepared (m,n,v, i) must also be true. The presence of a
replica set R 1 containing at least f + 1 benign counterpart
that considers prepared (m,v,n, i) to be true implies that a
request commits locally at a benign node with the
sequence number in view v if. Each valid NEW - VIEW
message in the NDC protocol contains JOIN messages from
2(f + 1) replicas inside a replica set R2 (EXIT, PCLEAR,

CLEAR) Because there are
1

()
3

n
f

−
= replicas in the

network, and at least most of the replicas are faulty, both R
1 and R2 have at least one healthy model. Node r JOIN
signals may convey the new primary data that was
improperly prepared in a prior view. Messages with the
same sequence number in a previous view will not be
committed if this strategy is used.

CONCLUSION AND FUTURE WORK
A "permission" network, such as a confederation of
cryptocurrencies, can benefit from the scalability of
Dynamic PBFT, a Byzantine fault-tolerant consensus
protocol. High safety and liveliness are provided by
Dynamic's PBFT, which is based on PBFT. It overcomes
such lethal challenges as being entirely closed and taking
no protections against faulty clones in the PBFT
environment. Our protocol permits nodes to join or exit the
consensus network, which prevents the entire system
from restarting. It also includes a method for describing
"wicked" backups. The blocklist of malicious primary and
backup nodes is also built into the protocols used to gain
consensus on these nodes' presence in the system and
remove them. Our protocol raises the cost of being
malicious. The protocol developed has improved dynamic
characteristics and resilience over PBFT because it is
descended from the former.

When combined with the NDC protocol or the three-phase
protocol, this protocol can ensure the safety property.
Customers who submit queries can rest assured that they
will receive proper responses because of this protocol,
which guarantees the system's liveness. Replicas are
forced to change their perspective if they cannot fulfill a
task. In addition, at least 2(f+1) benign duplicates should
be in the same view for at least 2(f+1) benign copies. This
technique has three steps to meet these requirements,
which are as follows.

An NDC protocol (e.g., the JOIN protocol) should not be
started early to keep the timer from running out
prematurely. Hence a replica should wait for 2f + 1 JOIN
requests from other counterparts before initiating a timer.
Allows the protocol to be launched at a more appropriate
time. Until the timer expires, the replica will send another
JOIN request to view v + 2 if it has not received a valid NEW
- VIEW message. At this point, a 2-minute timer is started.

http://www.ijscia.com/

298 Available Online at www.ijscia.com | Volume 4 | Issue 3 | May-Jun 2023

International Journal of Scientific Advances ISSN: 2708-7972

After receiving more than one valid join message for an
additional view that exceeds its current stance, the benign
replica should immediately send a join message as other
counterparts.

Finally, malicious copies cannot assault the system by
continually initiating the NDC protocol. We cannot
interfere with other replicas until one of our faulty ones
becomes the primary because we need at least f+1 valid
JOIN messages to create an NDS protocol. Despite this, it is
still possible to find and delete the faulty primary with the
PCLEAR technique. Dynamic PBFT can guarantee liveness
in a whole network by taking these precautions.

REFERENCES
[1] Zhan, Y., Wang, B., Lu, R., & Yu, Y. (2021). DRBFT:

Delegated randomization Byzantine fault tolerance
consensus protocol for blockchains. Information
Sciences, 559, 8-21.

[2] Chen, Y., Li, M., Zhu, X., Fang, K., Ren, Q., Guo, T., ... &
Deng, Y. (2022). An improved algorithm for practical
byzantine fault tolerance to large-scale consortium
chain. Information Processing & Management, 59(2),
102884.

[3] Jeon, S., Doh, I., & Chae, K. (2018, January). RMBC:

Randomized mesh blockchain using a DBFT
consensus algorithm. In 2018 International
Conference on Information Networking (ICOIN) (pp.
712-717). IEEE.

[4] Barger, A., Manevich, Y., Meir, H., & Tock, Y. (2021,

May). A byzantine fault-tolerant consensus library
for hyperledger fabric. In 2021 IEEE International
Conference on Blockchain and Cryptocurrency
(ICBC) (pp. 1-9). IEEE.

[5] Wang, Y. (2021, October). The adversary capabilities

in practical byzantine fault tolerance. International
Workshop on Security and Trust Management (pp. 20-
39). Springer, Cham.

[6] Tholoniat, P., & Gramoli, V. (2019). Formal

verification of blockchain byzantine fault
tolerance. arXiv preprint arXiv:1909.07453.

[7] Thai, Q. T., Yim, J. C., Yoo, T. W., Yoo, H. K., Kwak, J. Y.,

& Kim, S. M. (2019). Hierarchical Byzantine fault-
tolerance protocol for permissioned blockchain
systems. The Journal of Supercomputing, 75(11),
7337-7365.

[8] Crain, T., Gramoli, V., Larrea, M., & Raynal, M. (2018,

November). Dbft: Efficient leaderless byzantine
consensus and its application to blockchains. In 2018
IEEE 17th International Symposium on Network
Computing and Applications (NCA) (pp. 1-8). IEEE.

[9] Ahmed, N. O., & Bhargava, B. (2020). Bio-inspired

formal model for space/time virtual machine
randomization and diversification. IEEE Transactions
on Cloud Computing.

[10] Li, B., Weichbrodt, N., Behl, J., Aublin, P. L., Distler, T., &

Kapitza, R. (2018, June). Troxy: Transparent access to
byzantine fault-tolerant systems. In 2018 48th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN) (pp. 59-70). IEEE.

[11] Zhang, Y., & Tseng, L. (2021). Byzantine Concensus:

Theory and Applications in a Dynamic System.

[12] Loveless, A., Dreslinski, R., Kasikci, B., & Phan, L. T. X.
(2021, May). IGOR: Accelerating byzantine fault
tolerance for real-time systems with eager execution.
In 2021 IEEE 27th Real-Time and Embedded
Technology and Applications Symposium (RTAS) (pp.
360-373). IEEE.

[13] Ahmed, N. O., & Bhargava, B. (2018). From byzantine
fault-tolerance to fault-avoidance: An architectural
transformation to attack and failure resiliency. IEEE
Transactions on Cloud Computing, 8(3), 847-860.

[14] Yu, S., Zhu, J., & Yang, J. (2021, December). Efficient

two-dimensional self-stabilizing byzantine clock
synchronization in walden. In 2021 IEEE 27th
International Conference on Parallel and Distributed
Systems (ICPADS) (pp. 723-730). IEEE.

[15] Tanwar, S. (2022). Distributed Consensus for

Permissioned Blockchain. In Blockchain
Technology (pp. 211-249). Springer, Singapore.

[16] Yuan, Y., Li, F., Yu, D., Yu, J., Wu, Y., Lv, W., & Cheng, X.

(2019, July). Fast fault-tolerant sampling via random
walk in dynamic networks. In 2019 IEEE 39th
International Conference on Distributed Computing
Systems (ICDCS) (pp. 536-544). IEEE.

[17] Cohen, R., Haitner, I., Makriyannis, N., Orland, M., &

Samorodnitsky, A. (2022). On the round complexity
of randomized Byzantine agreement. Journal of
Cryptology, 35(2), 1-51.

[18] Kou, C., & Lundström, O. (2020). Self-Stabilizing

Byzantine Fault-Tolerant State Machine Replication-
Rust Implementation, Experimental Evaluation and
Applications in Trucks.

[19] Li, T., Tseng, L., Higuchi, T., Ucar, S., & Altintas, O.

(2021, November). Poster: Fault-tolerant Consensus
for Connected Vehicles: A Case Study. In 2021 IEEE
Vehicular Networking Conference (VNC) (pp. 133-
134). IEEE.

[20] Li, P., Peng, J., Yang, L., Zheng, Q., & Pan, G. (2018,

December). Crux—A New Fast, Flexible and
Decentralized Consensus Algorithm with High Fault
Tolerance Rate. In International Conference on Smart
Blockchain (pp. 66-76). Springer, Cham.

[21] Georgiou, C., Marcoullis, I., Raynal, M., & Schiller, E. M.

(2021, May). Loosely-self-stabilizing Byzantine-tolerant
binary consensus for signature-free message-passing
systems. In International Conference on Networked
Systems (pp. 36-53). Springer, Cham.

[22] Madsen, M. F., Gaub, M., Kirkbro, M. E., & Debois, S.

(2019, September). Transforming byzantine faults
using a trusted execution environment. In 2019 15th
European Dependable Computing Conference
(EDCC) (pp. 63-70). IEEE.

[23] Baird, L., & Luykx, A. (2020). The Hashgraph protocol:

Efficient asynchronous BFT for high-throughput
distributed ledgers. 2020 International Conference on
Omni-layer Intelligent Systems (COINS) (pp. 1-7). IEEE.

[24] Abraham, I., Nayak, K., Ren, L., & Xiang, Z. (2021, July).

Good-case latency of byzantine broadcast: A
complete categorization. In Proceedings of the 2021
ACM Symposium on Principles of Distributed
Computing (pp. 331-341).

http://www.ijscia.com/

299 Available Online at www.ijscia.com | Volume 4 | Issue 3 | May-Jun 2023

International Journal of Scientific Advances ISSN: 2708-7972

[25] Coelho, I. M., Coelho, V. N., Araujo, R. P., Yong Qiang, W.,
& Rhodes, B. D. (2020). Challenges of PBFT-inspired
consensus for blockchain and enhancements over neo
dBFT. Future Internet, 12(8), 129.

[26] Tseng, L. (2019, September). Eventual Consensus:
Applications to Storage and Blockchain. In 2019 57th
Annual Allerton Conference on Communication, Control,
and Computing (Allerton) (pp. 840-846). IEEE.

[27] Crain, T., Natoli, C., & Gramoli, V. (2021, May). Red

belly: a secure, fair and scalable open blockchain.
In 2021 IEEE Symposium on Security and Privacy
(SP) (pp. 466-483). IEEE.

[28] Bonomi, S., Decouchant, J., Farina, G., Rahli, V., &

Tixeuil, S. (2021, July). Practical Byzantine Reliable
Broadcast on Partially Connected Networks. In 2021
IEEE 41st International Conference on Distributed
Computing Systems (ICDCS) (pp. 506-516). IEEE.

[29] Rullo, A., Serra, E., & Lobo, J. (2019). Redundancy as a

measure of fault-tolerance for the Internet of Things:
A review. Policy-Based Autonomic Data Governance,
202-226.

[30] Hou, R., Jahja, I., Luu, L., Saxena, P., & Yu, H. (2018, April).
Randomized view reconciliation in permissionless
distributed systems. In IEEE INFOCOM 2018-IEEE
Conference on Computer Communications (pp. 2528-
2536). IEEE.

[31] Hajiaghayi, M. T., Kowalski, D. R., & Olkowski, J.

(2022, June). It improved communication complexity
of fault-tolerant consensus. In Proceedings of the 54th
Annual ACM SIGACT Symposium on Theory of
Computing (pp. 488-501). Luo, J., Kang, M., Bisse, E.,
Veldink, M., Okunev, D., Kolb, S., ... & Canedo, A.
(2020). A Quad-Redundant PLC Architecture for
Cyber-Resilient Industrial Control Systems. IEEE
Embedded Systems Letters, 13(4), 218-221.

[32] Gueta, G. G., Abraham, I., Grossman, S., Malkhi, D.,

Pinkas, B., Reiter, M., ... & Tomescu, A. (2019, June).
Sbft: a scalable and decentralized trust infrastructure.
In 2019 49th Annual IEEE/IFIP international
conference on dependable systems and networks
(DSN) (pp. 568-580). IEEE.

[33] Hazari, S. S., & Mahmoud, Q. H. (2019). Comparative

evaluation of consensus mechanisms in
cryptocurrencies. Internet Technology Letters, 2(3),
e100.

http://www.ijscia.com/

