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ABSTRACT 
Wind power is one of the thriving renewable energy technologies lately in the world. Therefore, the assessment 
of wind speed data is imperative for a specific site. This study focused on geostatistical modeling of wind speed 
distribution in Uganda. Wind speed data from 1981 to 2019, recorded at a height of 10 m above mean sea level 
was captured from NASA POWER Data Access Viewer and analyzed. The study area consisted of 35 stations 
evenly distributed over the country. Probabilistic assessment was performed using Minitab® statistical 
software to determine the best-fitting probability distribution function to the data sets.  Experimental semi-
variograms were calculated using exceedance probability data sets of 20%, 50%, 80%, and 95% obtained from 
probabilistic analysis. The theoretical models were then fitted to the experimental semi-variograms. Jack-
knifing cross-validation approach was employed to assess the performance and validity of the theoretical semi-
variogram models and their parameters. Kriging maps for the wind speed of pre-defined probabilities were 
then generated using JeoStat geostatistical software and Surfers 13®. Of the different theoretical semi-
variogram models tested, the spherical model showed the best fit to all experimental semi-variograms. Cross-
validation proved that the theoretical models obtained were in good agreement with the experimental data 
used. The kriging maps revealed that areas around Lake Victoria and Mt. Elgon experience higher wind speeds 
compared to other parts. Therefore, Kriging maps can be used to assess spatial distribution and magnitude of 
wind speed as well as the representativeness of geographical locations of observation stations. 
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INTRODUCTION  
The wind is one of the notable atmospheric variables 
which directly influence physical and biological processes 
around the globe [1]. On the other hand, wind power has 
been one of the fastest-growing renewable energy 
technologies and receiving much attention lately. Wind 
power is a popular, sustainable, renewable energy source 
that has a much smaller impact on the environment than 
burning fossil fuels. As such, it is an important cornerstone 
of a non-polluting and sustainable energy supply [2,3]. 
Finding suitable wind speeds can be a basis for accurate 
estimation of the wind energy potential of a specific region 
[4]. Wind power is considered a viable alternative energy 
source of electricity in recent times. This is because it 
reduces the harmful effects of conventional electric power 
generation schemes and also ensures the security of the 
energy supply. But then, wind direction, as well as its 
velocity, has a significant influence on both pollination and 
crop growth in agriculture. 
 
Uganda is considered a developing country with great 
wind energy potential. Wind energy studies in Uganda 
have concluded that possible applications for the 
technology exist.  

 
These include among others water pumping for irrigation 
in remote areas and small-scale power generation in 
mountainous and hilly areas [5,6]. Small-scale industries 
and factories in rural areas, where targets for a mill range 
from 2.5 kVA to 10 kVA, could also benefit from the wind 
resource [5]. Therefore, in concern of this development, it 
is necessary to have a strong spatial awareness of the 
characteristics and distribution of wind speed within the 
country. The wind speed distribution is of immense 
importance for the assessment of wind energy potential 
and the performance of wind energy conversion in a given 
area [7]. It is also essential for structural design and 
environmental analysis [7], in the pollination of plants, and 
the regulation of agricultural-related animal behaviors. 
Therefore, probabilistic analysis, i.e., determination of the 
magnitude of the frequency of wind speed, is needed in the 
engineering design of structures. For example, where wind 
loading on structures needs to be assessed or where long-
term energy yields for wind farms need to be evaluated [8]. 
 
Several methods have been proposed for the prediction 
of wind speed distribution. These include Numerical 
Weather Prediction (NWP), Artificial Neural Networks 
(ANN), Statistical and Hybrid methods [9]. 
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In engineering practices, Statistical methods i.e., 
probability distribution models have been widely used. 
These include Weibull distribution [10–12], Rayleigh 
distribution [13], Normal distribution, Log-normal 
distribution [14–16], and Gamma distribution [15]. Apart 
from the point values of wind speed, the spatial 
distribution of wind is of great importance to make 
region-based assessments. In this context, knowing that 
wind speed can be modeled as a regionalized variable, in 
turn, geostatistical methods can be used for modeling its 
spatial distribution in a given area. According to [17], 
geostatistics is a powerful tool for the estimation of the 
spatial distribution of geoscience variables. Previous 
studies have revealed that geostatistical methods are 
more accurate and objective estimation techniques. 
Accordingly, they outperform other methods in 
developing authentic models for any spatially distributed 
data [18,19]. Hence, this study focused on geostatistical 
modeling of wind speed distribution in Uganda using the 
ordinary kriging interpolation technique. 
 

OVERVIEW OF GEOSTATISTICS 
[19] defines geostatistics as a branch of statistics that 
focuses on the analysis and interpretation of any spatially 
or temporally referenced dataset. According to [20], the 
objectives of applying geostatistical techniques are 
twofold: 1) to characterize and interpret the behavior of 
the existing sample data set and, 2) to use the 
interpretation to predict likely values at the unsampled 
locations. In any geostatistical analysis, there are two 
major steps. Semi-variogram analysis is the first and more 
vital step. This involves the determination of the spatial 
dependence structure, called the semi-variogram function 
[20]. The most commonly used theoretical semi-variogram 
functions or models are Gaussian, Exponential, Spherical, 
and Linear [20]. The resulting semi-variogram is a 
measure of the spatial dependence of the semi-variogram 
model used to predict values of the modeled variables at 
unsampled locations. The second step is kriging 
estimation; then, mapping of kriged estimates and kriging 
estimation errors. Kriging Equation 1 is solved repeatedly 
to make the best linear unbiased estimation at the un-
sampled locations over the sampling domain [21,22]. More 
generally, the two steps can be broken down into four 
steps for complete geostatistical analysis and mapping of 
regionalized variables [22] as the following: 1) 
determining an appropriate theoretical semi-variogram 
model used to fit experimental semi-variogram and 
possible anisotropy, 2) performing validation methods to 
the semi-variogram model, 3) generating kriging estimates 
and errors of estimates, i.e., kriging errors, for a point, zone 
or volume by kriging interpolation techniques and, 4) 
mapping the spatial distributions of the kriging estimates 
and kriging errors. 
 

Ordinary Kriging (OK) Interpolation Method 
Kriging is a geostatistical technique that has gained 
approval as a tool for spatial interpolation of different 
types of data, including meteorological data [22–25] such 
as precipitation, temperature, relative humidity, wind 
speed, etc. It is similar to the inverse distance weighting 
(IDW) method in that it uses a linear combination of 
weights at known points to estimate values at unknown 
points [20,26]. It is a technique of making optimal, 
unbiased estimates of regionalized variables at unsampled  
 
 
 
 
 
 
 
 
 

locations using the particular relationship between the 
spatial proximity among observational units and the 
numeric similarity among their values, i.e., spatial 
dependence, and the initial set of data values [27]. In this 
context, the kriging procedure takes into consideration the 
spatial structure of the given parameter, and thus it is better 
compared to other interpolation methods like the arithmetic 
method, nearest neighbor method, distance weighted 
method, and polynomial interpolation [27]. Apart from the 
other interpolation methods, kriging provides the 
estimation variance at every estimated point, which is an 
indicator of the estimation accuracy [28]. This is 
considered the major advantage of kriging over other 
estimation techniques. 
 
The most commonly used kriging method in geostatistics 
is the ordinary kriging (OK) method [23,29,30]. The OK 
method aims at estimating a value of the random variable 
Z(x) at a point of a region x0 for which a semi-variogram 
model is known, using data in the neighborhood Z(xα) of 
the estimation location as shown by Equation 1. 
 

          𝑍∗𝑂𝐾(𝑥0) = ∑ 𝜆𝛼
𝑂𝐾𝑧(𝑥𝛼)

𝑛(𝑥0)
𝛼=1                        (1) 

 

Where λα is the OK weights and n(x0) is the number of data 
closest to the location x0 to be estimated. In particular, λα 
values must be evaluated to obtain an unbiased estimation 
and to minimize the variance. 
 
The OK technique is applied on the basis of two 
assumptions: 1) the mean of the process is assumed 
constant over the sampling domain and is invariant within 
the spatial domain and, 2) the variance of the difference 
between two values is assumed to depend only on the 
distance vector h between the two points, and not on the 
location x [31]. 
 
METHODS AND MATERIAL 
Characteristics of the Study Area  
The study focused on Uganda, which lies in the East African 
region, across the equator between latitudes 4° 14′ N and 
1° 29′ S and longitudes 29° 34′ E and 35° 29′ E. The 
country is divided into four major regions: Northern, 
Eastern, Western, and Central. The northernmost point is 
found at the latitude of 04° 14' N. In the south, Uganda 
extends to the latitude of 01° 29' S. The southernmost 
point of Uganda is in Kabale district in the Western region. 
This point is located along the border that Uganda shares 
with Tanzania. Uganda’s most extreme point in the west is 
on the border between Uganda and the Democratic 
Republic of Congo. With a longitude of 29° 34' E, the 
westernmost point is situated in the Kisoro district. The 
country’s easternmost point is on the dividing line 
between Uganda and Kenya. This point is found in 
Nakapiripirit district at a longitude of 35° 02' E. The central 
part of the country consists of a moderately flat plateau at 
an elevation of 1000 m to 1300 m above mean sea level 
(amsl), with high-altitude areas both to the east (Mt. Elgon) 
and the west (Mt. Rwenzori and Mt. Mufumbira). The 
western region of the country is also divided by the 
western rift valley running from north to south at an 
elevation of 600 m to 900 m amsl. Lake Victoria, which is 
the largest freshwater lake in Africa, occupies the 
southeastern corner of the country as seen in FIGURE 1.  
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FIGURE 1: Map of Uganda showing wind speed observation stations (Captured from Google Earth).
 
Data Sets 
Thirty-five (35) meteorological stations were randomly 
selected to cover the four regions of Uganda (FIGURE 1). 
Average monthly wind speed (WS) data observed at a height 
of 10 m during the years 1981 to 2019 was used in this 
study. The data was downloaded from the POWER Data 
Access Viewer website (DAV) with geographical coordinates 
in decimal degrees (https://power.larc.nasa.gov/data-
access-viewer/). The coordinates were converted to UTM 
coordinates of WGS 84 datum (EPSG:4326) with the help of 
Google Earth. The GPS coordinates of the stations both in 
geographical and UTM coordinate systems and elevation are 
summarized in TABLE 1. 
 
Exploratory Data Analysis and Probabilistic Assessment 
Exploratory data analysis (EDA) is a useful perspective to 
take any path in unraveling the mysteries in observational 
data. In this regard, EDA was carried out to a) check for the 
missing data, b) gain maximum insight into the data set 
and its underlying structure, and, c) check for the outliers 
and other anomalies in the data set. 
 
Following the procedure given by [32] and [20], 
descriptive statistics such as mean, mode, median, 
minimum and maximum, variance, standard deviation;  
 
 

 
Coefficient of variation (CV), skewness (CS), and kurtosis 
(CK) for average monthly wind speed data series for each 
station were calculated.  
 
On the other hand, frequency analysis and probabilistic 
assessment of average monthly wind speed data were 
done. Frequency analysis conveys, in a nutshell, the 
stochastic behavior pattern of the data.  
 
In this regard, Normal, Lognormal, and 3-Parameter 
Lognormal distribution models have had wide application 
in engineering design works because of normal 
distribution’s early connection with the “Theory of Errors” 
and for it has perfect mathematical properties [20]. 
Therefore, with the help of Minitab statistical analysis 
software, average monthly wind speed data for each 
station was empirically fitted to the distribution functions 
of Normal, Lognormal, and 3–Parameter Lognormal (LN3). 
The corresponding wind speed probability plots for each 
station were generated to find out which distribution best 
fits the data set as well as identify the parameters of the 
distribution functions. From the LN3 probability plot, the 
wind speed (WSx) data sets with 20%, 50%, 80%, and 95% 
exceedance probabilities for each station were recorded. 
The threshold value (β) of the LN3 distribution was also 
recorded. 

TABLE 1: Geographical and UTM coordinates (Datum=WGS84) and elevation data for the selected stations. 
 

No Station  
Geographical Coordinates UTM Coordinates (Datum: WGS84) 

Latitude (º) Longitude (º) Eastings (m) Northings (m) 
Elevation 
(amsl, m) 

1 Arua 3.02291 30.90771 267 450.556 334 349.485 1 078.04 

2 Bushenyi -0.43629 30.11181 178 488.928 -48 284.908 1 350.92 

3 Busia 0.46461 34.09021 621 316.485 51 362.736 1 249.44 

4 Entebbe 0.06801 32.47601 441 692.255 7 517.465 1 171.83 

5 Fort portal 0.67471 30.28761 198 086.170 74 659.962 1 225.60 

6 Gulu 2.77881 32.29071 421 163.950 307 168.073 977.88 

7 Hoima 1.45321 31.35271 316 731.040 160 690.542 1 080.10 

8 Ibanda -0.05489 30.47171 218 572.789 -6 072.946 1 350.92 

9 Iganga 0.61431 33.47911 553 310.529 67 902.129 1 106.54 

10 Jinja 0.43131 33.20731 523 067.814 47 673.037 1 145.36 

11 Kabale -1.20259 30.03431 169 916.867 -133 101.938 1 625.66 

http://www.ijscia.com/
https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
https://en.wikipedia.org/wiki/EPSG
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No Station  
Geographical Coordinates UTM Coordinates (Datum: WGS84) 

Latitude (º) Longitude (º) Eastings (m) Northings (m) 
Elevation 
(amsl, m) 

12 Kalangala -0.31849 32.16751 407 362.846 -35 206.459 1 157.64 

13 Kampala 0.32171 32.59411 454 834.932 35 559.523 1 149.04 

14 Kamuli 1.03481 33.14621 516 266.894 114 378.097 1 063.23 

15 Kasese 0.19131 30.10081 177 255.845 21 172.786 1 384.35 

16 Kiboga 0.92191 31.78171 364 441.978 101 922.034 1 180.24 

17 Kisolo -1.28419 29.68801 131 343.841 -142 180.818 1 768.53 

18 Kitgum 3.29861 32.88581 487 314.415 364 600.285 975.38 

19 Kotido 3.01201 34.11851 624 299.273 332 984.44 1 255.65 

20 Kyenjejo 0.61061 30.64411 237 788.836 67 548.251 1 158.15 

21 Lira 2.24101 32.88391 487 091.894 247 700.718 1 061.11 

22 Masaka -0.33599 31.73781 359 540.816 -37 146.068 1 194.88 

23 Masindi 1.69071 31.72131 357 763.480 186 921.633 1 010.59 

24 Mbale 1.07571 34.17671 630 924.699 118 923.659 1 568.84 

25 Mbarara -0.60659 30.66061 239 626.129 -67 102.744 1 398.92 

26 Mityana 0.40141 32.04401 393 619.872 44 374.091 1 171.83 

27 Moroto 2.52911 34.65961 684 520.236 279 662.416 1 111.35 

28 Moyo 3.65531 31.72341 358 222.837 404 127.791 776.50 

29 Mubende 0.54841 31.39721 321 634.300 60 639.685 1 222.07 

30 Nakasongola 1.31041 32.50081 444 466.375 144 845.464 1 064.84 

31 Palisa 1.21941 33.80051 589 059.597 134 794.889 1 077.76 

32 Rukungiri -0.67799 29.90171 155 092.650 -75 048.731 1 467.77 

33 Soroti 1.71671 33.62141 569 117.908 189 759.834 1 075.05 

34 Tororo 0.69251 34.18091 631 405.547 76 559.568 1 525.13 

35 Yumbe 3.55491 31.34171 315 800.838 393 094.741 875.95 

Geostatistical Analysis Procedure  
The results of frequency analysis, i.e., wind speed (WSx) of 
20%, 50%, 80%, and 95% exceedance probability data 
sets, were used for geostatistical analysis. 
 
Experimental Semi-variogram Computation and Semi-
variogram Modelling 
The semi-variogram is a plot of semi-variances as a 
function of distances between the observations and is 
denoted by 𝛾(h) [22,25]. Assuming that wind speed data 
are regionalized variables, Omni-directional experimental 
semi-variograms of wind speed measurements were 
estimated using Equation 2. Anisotropic experimental 
semi-variograms with directional rotation of the data were 
also tried in this paper, but results were not discussed in 
detail. Experimental semi-variogram calculations were 
done with the help of JeoStat geostatistical software [22].  
 

       𝛾∗(ℎ) =
1

2
𝑆ℎ

2 =
1

2𝑁ℎ
∑ (𝑔𝑖 − 𝑔𝑗)ℎ

2
                                  (2) 

 
Where γ* is the estimated value of the semi-variance, h is 
the distance between two stations, Nh is the number of 
pairs separated by distance vector h, gi is the wind speed 
values included in the estimation, and (gi – gj) is the 
difference in values between the two stations found in each 
pair.  
 
The wind speed (WSx) data sets of 20% (WS20), 50% 
(WS50), 80% (WS80), and 95% (WS95) exceedance 
probability level in text file format was imported into 
JeoStat software.  
 
To read the data in JeoStat, a two-dimensional data option 
of no transformation was adopted with the X and Y 
coordinates set as Eastings and Northings, respectively. 
The experimental semi-variograms were estimated using 
the lag spacing details provided in TABLE 2. 
 
 

 

 
TABLE 2: Lag Spacing details for WS20, WS50, WS80, and WS95 data sets. 

 

Lag spacing Values WS20 WS50 WS80 WS95 

Minimum (km) 27.1 27.1 27.1 27.1 

Maximum (km) 6956.7 6956.7 6956.7 6956.7 

Increment (km) 34.1 34.1 34.1 34.1 

Number of lags 20 20 20 20 
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Experimental semi-variograms were then fitted to the 
most frequently used theoretical models discussed by [20]. 
Of all the semi-variogram models tested, the spherical 
model showed the best fit to the experimental semi-
variograms of wind speed data. This model represents 
volumes, and relies on two parameters: a) The range of 
influence (radius of the sphere) and, b) the sill (plateau) at 
which the graph reaches the range. In addition to these, 
there may be a positive y-intercept called the nugget effect 
variance, i.e., Co. The spherical semi-variogram model is 
described below by Equation 3. 
 

  𝛾(ℎ) = {

𝐶0                                       ,   ℎ = 0

𝐶0 + 𝐶 {
3

2
(
ℎ

𝑎
) −

1

2
(
ℎ

𝑎
)
3
}        ,  0 < ℎ ≤ 𝑎

𝐶0 + 𝐶                                  ,  ℎ > 𝑎

      (3) 

Where the parameter “a” represents the range of influence 
of the semi-variogram. This is interpreted as the distance 
beyond which pairs of sample values are unrelated [21]; 
C0+C is the sill of the spherical component and C0 is the 
nugget effect on the vertical axis. The final height of the 
semi-variogram, i.e., sill value, is the sum of C0 and C [20].  
 
Model Validation  
Cross-validation was so used to evaluate the performance 
and validity of the fitted theoretical semi-variogram 
models. JeoStat employs a ‘jack-knifing’ cross-validation 
approach for validating the generated theoretical semi-
variogram and adopted parameters [22,33]. Essentially, it 
checks the compatibility between the input data and the 
model outputs. The procedure considers each observation 
point in turn by removing it temporarily from the data set 
and using its neighboring information to predict the value 
of the variable at its location while using the fitted model. 
It also uses the information from surrounding stations to 
predict the value in different locations. In JeoStat, the 
estimate is compared with the measured value by 
calculating the reduced variable (REi), mean reduced error 
(MRE), and reduced variance (RVAR) as given by Equations 
4 - 6.  

          REi = [
Zi

∗−Zi

σOKi
]                                                 (4) 

             RVAR =
1

N
∑ REi
N
i=1                                        (5) 

             RVAR =
1

N−1
∑ (REi −MRE)2N
i=1                (6) 

where Z*i is the estimated (predicted) value at station I, Zi 

is the observed (measured) value at the station and iOK

is the kriging standard deviation or kriging error. The 
positive and negative errors are defined as overestimates 
and underestimates, respectively. 
 
 

The results of MRE and RVAR given by JeoStat software 
were used to evaluate whether the spherical semi-
variogram models obtained depict the existing variance 
structure of wind speed. This was done using the 
procedure described by [22] 
 

Kriging and Mapping of Kriged Estimates 
JeoStat software was once again used to generate wind 
speed estimates and kriging estimation errors at the grid 
nodes. In this context, point values at grid nodes were 
estimated by following the criteria suggested by [22]. For 
all the trials, a total of 39,600 grids (200 x 198 in Eastings 
and Northings, respectively) with a grid size of 2766 m x 
2766 m were established over the study area. Surfers 13® 
software package was used to generate the kriged 
(interpolated or prediction) maps for variables of WS95, 
WS80, WS50, and WS20.  
 

To this end, the wind speed estimates generated by JeoStat 
were imported into Surfers 13®. A contour interval of 0.05 
m/s and 0.01 m/s was used for the generation of contour 
maps (spatial distribution pattern) for the kriged wind 
speed and kriged errors, respectively. 
 

RESULTS AND DISCUSSION 
Descriptive Statistics 
Descriptive statistics of wind speed data series by stations 
are summarized in TABLE 3. In the table, one can see that 
coefficients of variation (CVs) fluctuate between 2.58% 
(for Lira district) and 6.2% (for Kalangala district). This 
indicates that wind speed is more or less uniform and does 
not vary widely in most parts of the country. The mean 
wind speed also varies between 4.65 m/s and 2.88 m/s 
with the highest and lowest experienced in Busia (Eastern 
Uganda) and Fort Portal (Western Uganda), respectively. 
For most stations studied, the histograms of the data 
showed a uni-modal characteristic with the mode ranging 
from 3.14 m/s to 4.54 m/s. Unlike Iganga, Kiboga, Moroto, 
and Nakasongola, the data set indicated a moderately right 
(positive) skewed distribution, showing asymmetry (Cs > 
0). The skewness is positive because the data is skewed to 
the upper tail of the histogram of wind speed values. A 
right-skewed distribution behavior might be attributed to 
the low variability of wind speed across all regions in 
Uganda. Data recorded from all the stations exhibited a 
coefficient of kurtosis less than three (<3) with the 
exception of wind speed data from Kigtum that had a 
kurtosis coefficient of slightly greater than 3. This means 
that, according to the normal distribution, wind speed 
distribution in Uganda is platykurtic. Due to the slight 
skewness in the sample data, the median is almost equal to 
the mode and mean wind speed across all stations, 
indicating that types of normal probability distribution 
might be the best candidate models to be fitted to the 
observed frequency of the data. Accordingly, as seen in 
Table 3, there seems no major discrepancy between the 
mode, median, and mean wind speed across the country.

 
TABLE 3: Descriptive statistics of average monthly wind speed (WS, m/s) were recorded from 1981-to 2019. 

 

Station Mean Mode Median Min Max StDev* CV CS CK 

Arua 3.93 3.79 3.91 3.76 4.29 0.1226 3.12 0.95 1.15 

Bushenyi 3.68 3.62 3.69 3.35 4.18 0.1893 5.14 0.48 0.33 

Busia 4.65 4.54 4.64 4.31 5.10 0.1799 3.87 0.33 -0.28 

Entebbe 3.87 3.81 3.83 3.53 4.40 0.1808 4.67 0.77 0.92 

Fort portal 2.88 2.88 2.88 2.68 3.20 0.1074 3.73 0.72 0.72 

Gulu 3.98 3.93 3.99 3.73 4.36 0.1302 3.27 0.35 0.55 

Hoima 3.90 4.00 3.91 3.62 4.22 0.1627 4.18 0.09 -0.97 

Ibanda 3.68 3.62 3.69 3.35 4.18 0.1893 5.14 0.48 0.33 

Iganga 3.90 3.92 3.92 3.58 4.14 0.1545 3.96 -0.51 -0.60 
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Station Mean Mode Median Min Max StDev* CV CS CK 

Jinja 3.74 3.69 3.70 3.48 4.05 0.1461 3.91 0.64 -0.36 

Kabale 3.55 3.45 3.54 3.13 3.98 0.1898 5.35 0.30 -0.17 

Kalangala 4.34 4.29 4.29 3.89 5.10 0.2689 6.20 0.82 0.64 

Kampala 3.67 3.76 3.64 3.40 4.10 0.1506 4.10 0.56 0.34 

Kamuli 4.03 3.93 4.03 3.79 4.30 0.1408 3.49 0.08 -0.87 

Kasese 3.32 3.15 3.31 3.02 3.76 0.1576 4.75 0.71 1.02 

Kiboga 3.81 3.72 3.82 3.50 4.14 0.1657 4.35 -0.09 -0.70 

Kisolo 3.12 3.14 3.10 2.84 3.47 0.1621 5.19 0.42 -0.73 

Kitgum 3.89 3.99 3.91 3.59 4.39 0.1409 3.62 0.91 3.11 

Kotido 3.89 3.85 3.88 3.51 4.21 0.1965 5.05 0.02 -1.02 

Kyenjejo 3.61 3.46 3.62 3.39 3.99 0.1397 3.87 0.49 0.15 

Lira 3.93 3.93 3.93 3.68 4.23 0.1013 2.58 0.32 2.20 

Masaka 4.40 4.42 4.39 3.98 5.11 0.2495 5.67 0.66 0.36 

Masindi 3.82 3.87 3.83 3.57 4.08 0.1324 3.46 0.06 -0.64 

Mbale 3.67 3.80 3.66 3.37 4.05 0.1750 4.77 0.30 -0.73 

Mbarara 4.17 4.26 4.14 3.67 4.78 0.2358 5.65 0.54 0.64 

Mityana 3.87 3.81 3.83 3.53 4.40 0.1808 4.67 0.77 0.92 

Moroto 3.55 3.60 3.54 3.22 3.79 0.1475 4.16 -0.26 -0.55 

Moyo 3.96 3.91 3.91 3.75 4.29 0.1361 3.44 0.85 0.05 

Mubende 3.83 3.74 3.83 3.54 4.18 0.1654 4.32 0.12 -0.74 

Nakasongola 3.94 3.99 3.95 3.66 4.19 0.1439 3.65 -0.31 -0.52 

Palisa 4.14 4.27 4.14 3.83 4.52 0.1364 3.29 0.06 1.10 

Rukungiri 3.04 2.97 3.02 2.79 3.41 0.1399 4.60 0.64 0.39 

Soroti 4.03 4.00 4.00 3.84 4.27 0.1104 2.74 0.30 -0.57 

Tororo 4.31 4.27 4.28 3.97 4.70 0.1846 4.28 0.21 -0.71 

Yumbe 4.11 3.93 4.10 3.87 4.51 0.1573 3.83 0.56 -0.41 
*StDev: Standard Deviation; CV: Coefficient of Variation; CS: Coefficient of Skewness; CK: Coefficient of Kurtosis.
 
Outcomes of Exploratory Data Analysis and Frequency 
Assessment 
Exploratory data analysis of observation WSx data for each 
station showed that the data was continuous since there 
was no year with missing data.  
 

 
Frequency analysis of wind speed data showed that the 3-
parameter lognormal distribution function fitted well to 
the station’s data. For example, the distribution 
characteristics of wind speed data for the Arua station are 
shown in Figure 2. 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2: Wind speed probability plot of Arua station of 95% confidence intervals: (a) Histogram of average monthly 
wind speed, (b) Normal plot, (c) Lognormal plot, (d) 3-Parameter Lognormal (LN3) plot. CL stands for 95% confidence 

limits or intervals.
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As seen in Figure 2b, the fit of the normal distribution to 
the data is not well enough. However, taking the 
logarithms of data forced a better fit of the normal 
distribution (Figure 2c). In the end, adding a threshold 
parameter (β=3.66 m/s) to the data provided a good fit for 
the LN3 distribution (Figure 2d), resulting in all the 
observed  
 

probabilities (dots in Figure 2d) remaining within the 
confidence limits. The wind speed data (WSx) of 95%, 
80%, 50%, and 20% exceedance probabilities were 
estimated by using the distribution model of each station. 
The threshold parameter (β) of LN3 distribution models 
and estimated WS95, WS80, WS50, and WS20 values were 
given in Table 4. 

TABLE 4: Wind speed values with exceedance probability. 
 

Station Threshold (β) WS20 WS50 WS80 WS95 

Arua 3.66 4.02 3.91 3.83 3.78 

Bushenyi 2.67 3.83 3.67 3.52 3.41 

Busia 3.58 4.79 4.63 4.49 4.38 

Entebbe 3.14 4.01 3.85 3.72 3.62 

Fort portal 2.47 2.96 2.87 2.79 2.73 

Gulu 2.81 4.09 3.98 3.88 3.79 

Hoima 1.73 4.03 3.89 3.76 3.64 

Ibanda 2.67 3.83 3.67 3.52 3.41 

Iganga 3.13 4.03 3.90 3.77 3.64 

Jinja 3.26 3.85 3.72 3.62 3.54 

Kabale 1.95 3.70 3.54 3.39 3.26 

Kalangala 3.54 4.54 4.29 4.11 3.98 

Kampala 3.01 3.79 3.66 3.55 3.46 

Kamuli 1.77 4.15 4.03 3.91 3.80 

Kasese 2.61 3.44 3.30 3.19 3.09 

Kiboga 3.04 3.95 3.81 3.67 3.54 

Kisolo 2.54 3.25 3.10 2.98 2.90 

Kitgum 3.06 4.00 3.88 3.77 3.69 

Kotido -5.11 4.05 3.89 3.73 3.58 

Kyenjejo 3.01 3.72 3.60 3.49 3.41 

Lira 1.97 4.01 3.93 3.85 3.77 

Masaka 3.56 4.59 4.36 4.19 4.05 

Masindi -0.09 3.93 3.82 3.71 3.61 

Mbale 2.80 3.81 3.65 3.52 3.41 

Mbarara 2.70 4.36 4.15 3.97 3.82 

Mityana 3.14 4.01 3.85 3.72 3.62 

Moroto 3.05 3.67 3.55 3.42 3.30 

Moyo 3.65 4.05 3.93 3.84 3.79 

Mubende 1.80 3.96 3.82 3.69 3.57 

Nakasongola 3.12 4.06 3.94 3.82 3.70 

Palisa -5.73 4.26 4.24 4.03 3.92 

Rukungiri 2.45 3.15 3.03 2.92 2.84 

Soroti 3.39 4.12 4.02 3.94 3.87 

Tororo 2.94 4.46 4.30 4.16 4.03 

Yumbe 3.74 4.23 4.08 3.97 3.90 

Semi-variogram Analysis  
The resulting Omni-directional experimental and 
theoretical semi-variograms are seen in FIGURE . The 
experimental semi-variograms were in good agreement 
with the CV values presented in Table 3. All the plotted 
experimental semi-variograms increased gradually with 
the distance between pairs up to a distance equal to 200 
km. At this point, the semi-variograms displayed random 
oscillations around a sill value slightly beyond the range 
of influence.  

 
This implied that the experimental semi-variograms 
would best be fitted by the spherical model described by 
Equation 3. Apart from the nugget effect component, there 
exist no nested structures in the experimental semi-
variograms. Therefore, nested theoretical models have not 
been tried in the phase of semi-variogram modeling. The 
parameters for the developed fitted spherical models for 
WS95, WS80, WS50, and WS20 are given in TABLE 5. 
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TABLE 5: Parameters for the spherical semi-variogram models fitted to data. 
 

Parameters 
Variable Analysed 

WS95 WS80 WS50 WS20 

Nugget (C0, (m/s)2) 0.025 0.017 0.020 0.024 

Sill (C0+C, (m/s)2) 0.114 0.107 0.118 0.130 

Range (a, km) 295.8 212.4 185.5 184.1 
𝐶𝑜

𝐶𝑜+𝐶
 (%) 22.20 16.30 16.60 18.20 

Modified Cressie goodness of fit statistics 0.279 0.314 0.297 0.217 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3: Experimental and theoretical semi-variogram models of wind speed for:  
(a) WS95, (b) WS80, (c) WS50, (d) WS20.

 

The nugget-to-sill ratio, i.e., 
𝐶𝑜

𝐶𝑜+𝐶
∗ 100, is used to classify 

the spatial dependency in variables [34]. If the nugget-to-
sill ratio is less than 25%, the variable is said to have strong 
spatial dependence. If it is between 25% and 75%, then the 
variable exhibits moderate spatial dependence; otherwise, 
the variable has a weak spatial dependence. Results 
provided in TABLE 5 show that the nugget-to-sill ratio for 
all four fitted semi-variogram models is less than 25%; 
therefore, the wind speed distribution structure in Uganda 
exhibits a strong spatial dependence that almost remained 
stable over the study years. For all four theoretical semi-
variograms generated, the nugget values were found to be 
relatively small and close to zero. This indicated that there 
was very small random variability, i.e., inherent spatial 
variability in the wind speed data, associated with the 
wind speed sample values. The modified Cressie goodness-
of-fit statistic for the fitted theoretical semi-variogram 
models also indicated good agreement with the 
experimental ones. The range of influence is the distance 
within which the wind speed values are spatially 
dependent. The minimum spatial dependence (184.1 km) 
was encountered with WS20 semi-variogram and the 
maximum (295.8 km) with WS95. 
 
Cross-validation Results 
According to [20], if the theoretical semi-variogram model 
and kriging technique are appropriate, the MRE and RVAR 
(standard deviation) should be approximately equal to 
zero and one, respectively.  
 
 
 

 
Kriging search and estimation parameters are of great 
importance in the ‘jack-knifing’ cross-validation procedure 
in the kriging process.  
 
In this context, kriging search parameters obtained as a 
result of many trials are given in TABLE 6. By using search 
parameters, the cross-validation exercise produced the 
reduced mean statistic of -0.0023, 0.0081, 0.0412, and 
0.0275 for the WS95, WS80, WS50, and WS20 theoretical 
semi-variograms respectively. The corresponding reduced 
variances were 0.9937, 1.0071, 1.0457, and 0.9911, 
respectively (Table 7). This indicates that the theoretical 
models obtained are in good agreement with the 
experimental data used and, that the estimation process is 
unbiased over the sample area. However, theoretical semi-
variogram models for the WS95 and WS80 data sets were 
able to predict more accurate wind speed values than the 
other models because their MRE and RVAR statistics were 
found to be so close to zero and one, respectively. The 
errors are defined so that a positive error is an over-
estimate and a negative error is an under-estimate. To this 
end, as seen clearly from the scatter plots of cross-
validation results given in Table 4, the wind speed 
prediction at 95% exceedance probability is under-
estimated whereas others are over-estimated. On the 
whole, cross-validation results given in  
TABLE 7 lead us to conclude that, the accuracy of kriging 
estimates of wind speed data is acceptable enough over 
Uganda.  
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FIGURE 4: Cross-validation scatter plots for: (a) WS95, (b) WS80, (c) WS50, and (d) WS20. 
 

TABLE 6: Kriging search and estimation parameters. 
 

Model Parameters 
Variables 

WS95 WS80 WS50 WS20 

Major range (km) 29.8 212.4 185.5 184.1 

Minor range (km) 29.8 212.4 185.5 184.1 

Angle (0) 0 0 0 0 

Dip angle (0) 0 0 0 0 

Plunge angle (0) 0 0 0 0 

Ratio (3D) 1 1 1 1 

Max. Pts/sector 7 6 8 8 

Min. Pts/sector 2 2 2 2 

 
TABLE 7: Cross-validation results for the fitted theoretical semi-variogram models for Wind Speed. 

 

Wind speed data sets 
Means of measured 

WS (m/s) 
Means of estimated 

WS (m/s) 
MRE RVAR 

WS95 4.562 4.516 -0.0023 0.9937 

WS80 4.612 4.648 0.0081 1.0071 

WS50 4.751 4.814 0.0412 1.0457 

WS20 4.960 4.971 0.0275 0.9911 

Mapping of Kriged Estimates  
In the wind speed prediction map (Figure 5), the areas 
shown in red are the areas where a high amount of wind 
speed is predicted, and the areas shown in dark blue are 
the areas with low wind speed. The wind speed prediction 
(kriged or kriging estimate) maps reveal that prospects for 
wind energy utilization in Uganda are low for large-scale 
wind resource applications. However, they indicate that 
potential exists in areas around the shores of Lake Victoria 
(Kalangala, Entebbe, Masaka, and Mityana), in the Eastern 
region, especially around Mt. Elgon (Mbale, Tororo, Busia, 
and Soroti), North (Yumbe, Kitgum, Gulu, and Arua) and 
North-Eastern/Karamoja Region (Kitgum, Kapchorwa, 
Palisa, and Lira). On the other hand, as shown in the kriged 
error maps (Figure 6), areas with high wind speed are 
predicted with high errors as compared to low wind speed 
areas.  
 
 

 
The extreme western part of the country is predicted with 
lower wind speed values, which implies that the 
probability of operating any wind energy application or 
development in this area is very low as compared to other 
parts of the country. The low levels of wind speed in the 
western region of the country could be attributed to the 
abundance of dense forests that act as wind buffers. 
Nonetheless, experimental evidence shows that these 
amounts of wind speeds are possibly fit for specific wind 
power applications such as water pumping in villages, 
small-scale irrigation for agricultural production, and 
small-scale power generation [35–37]. As might be figured 
out, it is important to note that the 95% exceedance 
probability wind speed is predicted with fewer errors 
compared to others. 
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The corresponding uncertainties/errors were less than 
5% in almost all stations. This confirms that the 
observation station density is sufficient enough. However, 
kriging estimation errors tend to increase in Lake Victoria  
 

and its environs. It should be addressed that the decrease 
in station density over the area caused a conspicuous 
increase in ordinary kriging estimation errors.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 5: Wind speed prediction map for: (a) WS95, (b) WS80, (c) WS50, (d) WS20. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 6: Wind speed prediction error map for: (a) WS95, (b) WS80, (c) WS50, (d) WS20.
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CONCLUSION AND RECOMMENDATIONS 
Based on the research results obtained, the following 
conclusion and recommendations were drawn; Following a 
systematic statistical analysis procedure plays an important 
role in obtaining tangible results to check inconsistencies in 
the data. In this context, exploratory data analysis (EDA) 
showed no anomalies in the observation wind speed data. 
Lognormal transformation helped to make wind speed data 
more normal or at least roughly symmetric. However, the 
additive parameter caused the data to conform well 
enough to the three-parameter log-normal distribution to 
make probabilistic assessment of wind speed data. 
Probability distribution models are the only tools for 
estimating a value of exceedance probability to assess 
uncertainty in the data. Therefore, wind speed data of 95% 
(WS95), 80% (WS80), 50% (WS50), and 20% (WS20) 
exceedance probabilities were estimated from probability 
distribution models. Geostatistical analysis methods were 
used to reveal spatial variability of wind speed data of pre-
defined probabilities, i.e., exceedance probabilities, over 
large areas.  
 

Experimental semi-variograms indicated no anisotropic 
behavior in the wind speed data by direction. The spherical 
model fitted well to the Omni-directional experimental 
semi-variograms. Kriging estimation and error maps may 
be used to assess spatial distribution and magnitude of 
wind as well as the representativeness of geographical 
locations of observation stations. The decrease in station 
density over the area caused a conspicuous increase in 
ordinary kriging estimation errors. In turn, priority should 
be given to establishing stations at points where ordinary 
kriging estimation errors are high. 
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