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ABSTRACT

The derivation of numerical methods to deal with differential equations framed from real life problems has
been on the rise of which great deal of attention have been drawn towards Runge-kutta methods. In recent
times, researchers have explored the derivation of Runge-Kutta methods by introducing higher order
derivative (up to the second order) in the terms of Runge-Kutta methods. We have also seen how other types
of ‘mean’ are used as a substitute to the more usually applied arithmetic mean in the derivation Runge Kutta
methods. However, in this paper some new Runge-Kutta type methods which border on the use of other types
of ‘mean’ such as harmonic mean, geometric mean or heronian mean with higher derivatives up to the second
derivative on a single explicit Runge-Kutta methods which were previously done on different explicit Runge-
Kutta methods are constructed, analyzed, implemented and compared. The qualitative features of the
methods including the local truncation error, consistency, convergence and stability of the new methods were
comparatively analyzed, investigated and established. We demonstrated the validity of the comparisons with
four numerical examples. The obtained results were compared with some numerical methods and the exact

solutions of the proposed problems.

Keywords: initial value problems; explicit runge-kutta methods; heronian mean; geometric mean;

harmonic mean.

INTRODUCTION

A large amount of real-life problems in sciences and
engineering can be reduced to mathematical problem
that can be solved under certain conditions. These
mathematical problems are often times called
differential equations. The analytical methods of
solution can be used to solve only selected class of
differential equations. These differential equations
that rule physical systems do not normally operate
closed form solutions as a consequence, numerical
methods are resorted to solve such differential
equations. In this work, we consider one of such
differential equations- first order initial value
problem differential equation expressed in the form:

¥ (x) = fx.y(0);

y@)=yo a=x=b(1)
The development of numerical methods for the
solution have turned out to be a very rapid research
area in recent decades. Several methods have been
developed using the idea of different types of ‘mean’
such as the geometric mean, heronian mean, centroidal
mean, contra-harmonic mean and harmonic mean.

Akanbi M.A. [4] proposed a 3-stage geometric
explicit Runge-Kutta methods for singular
autonomous initial value problems in ordinary
differential equations where geometric mean was
incorporated in the classical 3-stage Runge-Kutta
methods. A third order harmonic mean for
autonomous initial value problem was constructed
by Wusu et al. [21] The method was derived based
on harmonic mean and was confirmed to be better
than any third order of any form of explicit Runge-
Kutta methods. This idea was extended to fourth
order in [19]. Olaniyan et al. [16] constructed a new
Implicit Runge-Kutta method in which heronian
mean was used as a basis in the derivation. The paper
was found to perform better than the classical 2-
Stage Implicit Runge-Kutta methods.

On another note, researchers in recent times
discovered that higher derivative terms can be used
to enhance the performance of multistage methods.
This discovery led to many researchers employing
higher derivative terms in the derivations of their
methods of which a significant increase in efficiency
were achieved.
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In an earlier research work of Goeken D. and Johnson
0. [11], a 2-stage explicit Runge-Kutta method of
order 3 was developed for autonomous Initial Value
Problems with the notion of incorporating first
derivative in the internal stages of Runge-Kutta
method. This method was later extended to fourth
and fifth order methods in [12]. Akanbi [3] improved
on this research by deriving a two stage multi-
derivative explicit Runge-Kutta method involving
first and second derivatives which provided better
results. Wusu et al. [21] then presented a new class
of three stage Runge-Kutta methods with first and
second derivatives of which the cost of internal stage
evaluations is reduced greatly and there is an
appreciable improvement on the attainable order of
accuracy of the method. Lately, Olaniyan et al. [18]
extended the research works in [21] to a four-stage
multiderivative explicit Runge-Kutta method for the
solution of first order ordinary differential
equations. Several authors such as the ones in ([1],
[2], [6], [14], [15]) to mention a few, have developed
similar methods based on higher derivatives Runge-
Kutta methods.

All the derivations mentioned in the last paragraph
are being viewed in arithmetic mean sense, hence the

Yny1 = Vo = 4’(3’?:? h)
ky =hf(y)

need to explore other types of ‘'mean’ which have been
proven over the years to be another and efficient ways
of solving 0.D.Es. Consequently, in the research work
of Olaniyan et al. [17], a combination of higher
derivative up to the second derivative and some types
of ‘mean’ such as harmonic mean, geometric mean and
heronian mean were incorporated on a single explicit
three stage Runge-Kutta method to develop a new
Runge-Kutta type techniques. In this paper, some new
four stage numerical integration techniques that
bother on the use of higher derivatives up to the
second derivative and different types of 'mean’ in the
main formula are constructed to solve linear and
nonlinear initial value problems in O.D.Es. Their
qualitative features such as the local truncation error,
consistency, convergence and stability of the new
methods were comparatively analyzed, investigated
and established.

MATERIALS AND METHODS

For the numerical integration of, we consider the
derivation of schemes having a combination of some
types of ‘mean’such as geometric mean, harmonic
mean or heronian mean with higher derivatives up
to the second derivative in a single Runge-Kutta
Methods which are of the forms:

h3

ky =hf (y + haziky + hazf fy + > azs(ff5 + fzf}'}'))

hs
ks =hf (J’ + hasiky + hassk; + Rassffy +?ﬂ34(fffr + fzf}r}'))

(2)

hs
ks =hf (J’ + hagiky + hagsks; + hagsks + hrasffy +?ﬂ45(fffr + fzf}'}r])

Where ¢(yn;h) is equivalent to any of the following:

Pomerr (Vi 1) = €1k ks + 6\ Kok + c3yf ksky, (3)

kiks

ksks

L pamere (Vi 1)
and

TN Tk Ytk ik

ky + 2k + 2ks + kg + kiko +ykoks + ksky

Premerx (Vi b) =

3 (3
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DERIVATION OF THE METHODS

To derive these methods, we will obtain the Taylor’s series expansions of k2, k3, ks as follows:

h3 h
+Ea§1fzf}'}' + hsazszf, +Ea§1faf}'}'}'

ko= hf +h*axffy,
4

5
+?a21a23f3ffr}r

h
+?(ﬂ23 + 2a21a22)f*fyfyy

4

4 5

R h
+?ﬂzsfffr +ﬁﬂ31qu}w}'
(6)

h
+?a%1a22faf}f}'}}'

hS
+ E(ﬂgz + a21023) 2 3 fyyo

3

h
ks = hf +h%asf fy +—ﬂ§1f2f}'y + ¥ (az1a32 + as3)ff5

4

_a31f fU.’L

4

5
+a31a30) ffy +

h
- (2022!132 + asa)ff3 +

(051!132 + asy + 2a»a3,a3; + 2az,a33)f° fvfyy

3 3

h
ﬂ31f Fyyyy += (a21‘131032

(7

2 2
?( 2055031035 + 31034 + 031035 + 2051035033

5

2 242 2 2
+ a33 + 2a318a33 + Q23032 [ [ f yy +?(ﬂ21‘132031 + a33a31

+3 azﬂsz)f fyfyyy +

and

R3

ﬂzsﬂsszu

ky= hf +h*auff,+ —ﬂqlfzfu + h¥(az1a42 + A31043 + asa) ff5
h* h4
+Eﬂ§1f3f}r};u +?(ﬂ%1ﬂ42 + a31043 + Qa5 + 2021041042 + 204100
i

+2031041043) f*fy fyy +E (2a33047 + 2021032043 + 2033043 + ass) ff5

h® h®
+Eadlf4f}'}}'}' +?[ﬂ§1f141ﬂ43 + ay1045 + 04104205, ) f3,
5 (8)

+E( 2031035041043 + 2033041043 + Q41045 + 2032040y + 2051045044
2 2 2 2 2
+ a3 055 + agy + a31053 + 2051031 Qy3043 + 203104304 + 2051035031043

2 2 £2
+2a33031043 + 031032043 + Q34043 + 2022042021 + A23082) [ [ yy

h5

2
h5

1
3
+= (3 fad3; +7 3 3143 + @2104205, + 3104303, + ﬂ44ﬂ41) f? fyfywy

+E (3azsay; + 6a22032043 + 3034a43)f f

For ¢emerk (Yn/h), ki, and the Taylor’s series
expansions of k2, k3 and k4 are substituted into (3).
Then the resulting equation is compared with the
Taylor’s series expansion of Yn+1 about (Xn,Jn) up to
order 0(h®) to obtain system of 12 equations with 15
unknowns which were solved with the help of some

free parameters to obtain corresponding
parameters. For computational advantage we will
make az2 = az3=as3=0. Upon solving these equations,
the values of the parameters were obtained and then
substituted into the general form to obtain the
following method:
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1 3 3
= 11.(‘;(1;(2 +E~J[-If2k3 +§\1J-If3ff4

yﬂ+1 —J’ﬂ
k, =hf(y)
ke =hf (y v 2 e~ 22t fo}.},))
2 15 16 ©)
ks =hf (y +—hk1 +—h ffL ——hSUfZ +f fu))
k= 1 (3 + gt —phes =g f, 4T3+ 1))

In the same manner, to obtain ¢HaMERK(Y:;h), we
will substitute k1 and equations (9-10) in (4) to get a
simplified resulting equation which is then
compared with the Taylor’s series expansion of ¥n+1
about (X», yn) up to order 0(h®) to obtain system of 12
equations with 15 unknowns that were solved with
the help of some free parameters.

For convenience and computational advantage, we
. 1
will set free parameters as follows: a12=7 and as2 =

as3 = 0. Solving the resulting set of equations,
corresponding parameters were gotten and
substituted in the general form as:

_ klkz Zkzkg EkSk‘i
Ype1r =Vn = 3(ky +ks) (ko +kg) 3(ks+ky)

ke = b (y+ghs —5 A1, + 3RS+ 1))

#(10)

ks =hf (J' +5hk, ~ZIFT, +%h3(fff' +f2f-‘""))

1 15
ks —hf(y-l— hkl——hk2+ hszt

Finally, for ¢ HeMERK(Yn;h), again we will substitute
ki and equations (6) in (5). The result obtained is
also compared with the Taylor’s series expansion of
Yn+1 about (X, yn) up to order 0(h%). Here, we have

PR +11y)

12 equations with 12 unknowns which were
systematically solved to get the corresponding
parameters. The values of the parameters are then
substituted into the general form as follows:

k4 2ky + 2ks + kg + \Jkoky + Koks + (ksky

Va+1 — Va
ky =f(y)

b =1 (vgin —%h%ﬁ% )

9

#(11)

ks f(}”r > hky += hszl ——h3(ff2+f2fu))

ki = Shk zhk th
s =f y"‘ﬁ 173 2+§ ffy+

Qualitative Features

We will consider some basic features which are very
vital to the development of the constructed schemes.
These features are local truncation error, consistency,
stability and convergence.

Local Truncation Error

Definition 3.1.1 ([13])

The local truncation error Tn+1 at Xn+1 of the general
one step method is given as

Thy = .'}'(xﬂ+1) - .'}'(x?z) - hfi’(xw v, h)

5
=P0r3+ Fry)

Where y(xn) is the theoretical solution.

The local truncation error of the constructed schemes
in compliance with the above definition can be
expressed as

Trs1 = V(xns1) — Vne1
Definition 3.1.2 ([13])
A numerical method is said to be of order p if p is the

largest integer for which Tn+1 = O (h"*%) for every 1t
andP =1,
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Consequently, the local truncation error of the methods constructed are as follows:

4-Stage GMERK

hﬁ

Tn1 = 3760 (SFf3 = 123 fyy + 14F3fyf 3y — 20F3f 5 f yyy — 15F* Fyyfyyy + OF*fyf vy — 41 Fryyyy) (12)

4-Stage HaMERK

6

h
Tnt1 =230 (715 = 2212F3fyy + 315 f 33y — 2813 F3f vyy — 33F* Fyyfypy + 35 *fyFyyyy — 9 Fryyyy) (13)

4-Stage HeMERK

Theorem 3.1.3 ([13])
Let flxy) belongs to C*ab] and let its partial
derivatives be bounded and if there exist L, M some
positive constants such that

i+j

5x6y0

L i+

then in terms of error bound by virtue of Lotkin in
Lambert [13], hence the strict upper bound with
respect to y only for the constructed methods are
given as follows:

|LTEgy| <

23
I 6
2160hML +0(h)

19
7680

LTE;:| < 31
| HE|—23040

ILTEq4| < h*ML* + 0(h)®

hPML* + 0(h)®

Consistency

Definition 3.2.1 ([13])

A numerical method is said to be consistent with an
initial value problem if

¢(x,v,0) = f(x,y)

Thus, a consistent method has at least order one.

Definition 3.1.2 ([13])

A scheme is said to be consistent if the difference
equation of the integrating formula exactly
approximates the differential equation it intends to
solve as the step size approaches zero.
In order to establish the consistency property of the
proposed method it is sufficient to show that

}ii_)n{}@(xw Y h) = f(xn: yﬂ)

where @ (X Y5 h) is the increment function of the
numerical method.

The consistency of the derived methods was
investigated using the above consistency definitions
and were all confirmed consistent.

FIGURE 1: Absolute Stability Region of the Proposed Methods.
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Stability of the Derived Schemes

The stability of numerical methods for solving an [VP
in ODE can be analyzed using the linear test problem
y’=Ay proposed in [7] , where the solution is y=e?’
and 24 a complex constant. Applying ¢eMERK (Vn;h),
¢HaMERK(Yw;h), and ¢HeMERK(Yn;h), to the linear
test problem and allowing z= Ah. Incidentally, the
proposed methods have the same stability polynomial
which is given as:

1 1 1 1
R(z) =1 —z2 4=z 4 —z* 4 —25 (15
(2) +z+zz +6z +24 +1202 (15)

The absolute stability region is expressed in figure 1.

Convergence
We will test for the convergence of the derived schemes
using the following definitions and theorems.

Definition3.4.1([7])

A numerical method is said to be convergent if for all
initial value problems satisfying the hypothesis of the
Lipschitz condition given by

IfCe,v) — ey = Lly—vy7

where the Lipschitz constant L is denoted by
L =max|f},(x,y)|.

Theorem 3.4.2 ([7])
The necessary and sufficient conditions for a numerical
method to be convergent is for it to be consistent and stable.

Definition 3.4.3 ([13])

A numerical method is said to be convergent if it is
consistent and has an order greater than one. From
the theorem and definitions above, we can conclude
that the derived methods are convergent.

Numerical Experiment

In this section, we will compare the numerical
performances of the derived methods with some
existing numerical methods in the literature. Some
linear and nonlinear initial value problems were used
to perform this numerical experiment and the
methods for comparison are denoted as follows.

e CM: The classical 4-stage explicit Runge-Kutta

method,

* 4HERK: The 4-stage harmonic explicit Runge-Kutta
method derived in [19],

¢ 4MERK: The 4-stage multiderivative explicit Runge-
Kutta method derived in [18],

* 4HRK: The 4-stage harmonic Runge-Kutta scheme
derived in [8],

* 4GM: The Runge-Kutta method with higher order
derivative derived in [12].

The basis used in the numerical comparisons is the
usual test based on determining the maximum global
error in the solutions over the whole integration
interval.

Each problem will be integrated with different step
sizes and the comparisons is base on the maximum
global error versus the step size. These methods were
implemented in Wolfram Mathematica.

Problem 1 ([19]). Consider the initial value problem
IVP:

y==y), y0=1

whose analytic solution is y(x) = e™* The numerical
results are presented in Table 1.

TABLE 1: Maximum Global Error Obtained for
Problem 1 with h = 0.01.

Methods Maximum Global Error
CM 3.19642537301E — 7
4GM 5.99620342820E — 6

4MERK 3.75025500425E — 7
4GMERK 1.90708608381E — 6
4HaMERK 2.00733053111E -6
4HeMERK 5.00389914390E — 6
4HERK 5.00389914390E — 6

4HRK 2.06380119410E — 6

Problem 2 ([15]). Consider the initial value problem
IVP:

y=yx)—x*+1, y(0)=0.5

whose analytic solution is Y(¥) = (x + 1)* — 0.5¢*,
The numerical results are presented in table 2.

TABLE 2 : Maximum Global Error Obtained for
Problem 2 with h = 0.1

Methods Maximum Global Error
CM  6.71650908315E — 6
4GM  §.75559001133E— 6

4MERK  1.38201581402E — 7
4GMERK  7.67391103483E — 7
4HaMERK  9.44100914037E—6
4HeMERK  533025189037E — 7
4HERK  6.32919914283E — 7

4HRK 1.19410392086F — 6

Problem 3 ([4]). Consider the initial value problem
IVP:

y=1+(®), yO)=2

T
whose analytic solution is y(x) =tan (x +E). The
numerical results are presented in Table 3.
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TABLE 3 : Maximum Global Error Obtained for
Problem 3 with h =0.01

Methods Maximum Global Error
CM  6.428920542763E — 9
4GM  8.907743056219E — 8

4MERK  9.96310643087E — 10
4GMERK  8.765006321249E — 9
4HaMERK  9,39640321807E — 10
4HeMERK  6.096147885433E — 9
4HERK  9.91477398323E — 10

4HRK  6.380160194166F —9

Problem 4 ([13]). Consider the initial value problem
IVP:

y'=—10(y(x) —1)% y(0) =2

1
whose analytic solution is ya)y =1+ 1+10x . The

numerical results are presented in Table 4.

TABLE 4: Maximum Global Error Obtained for
Problem 4 with h =0.01

Methods Maximum Global Error
CM  9.92697302188E — 8
4GM  9.75420704855E — 7

4MERK  9.29075373158E — 8
4HaMERK  7.92629502144E — 8
4GMERK  5.93873025341E — 7
4HeMERK  9.19028776297E — 8
4HERK  9.38900914395E — 8

4HRK  516380849462E — 7

Problem 5 ([21]). Consider the initial value problem
IVP:

1
':—’ (U):l
y ¥ y

whose analytic solution is () = V2x+ 1 The
numerical results are presented in Table 5.

TABLE 5 : Maximum Global Error Obtained for
Problem 5 with h = 0.1

Methods Maximum Global Error
CM  3.67392002725E —9
4GM  8.25303293651F — 8

4MERK  3.35877302755E — 9
4GMERK 1.19172617002E — 8
4HaMERK  8.00372912677E — 9

Methods Maximum Global Error
4HeMERK 3 .36383923299F — 9
4HERK  2.55389914398E — 9
4HRK  2.06380119410E — 8

Problem 6 ([1]). Consider the initial value problem
IVP:

y'=xyx)* —yx), y0)=1

1
whose analytic solution is ¥(%) =173 The numerical
results are presented in Table 6.

TABLE 6: Maximum Global Error Obtained for
Problem 6 with h = 0.001

Methods Maximum Global Error
CM  1.37503472297E — 10
4GM  1.00048595722E—9

4MERK  1.65936104575E — 10
4GMERK  3.47303720255E — 11
4HaMERK  4,17595036527EF — 11
4HeMERK  2.75495037334EF — 10
4HERK  5.00389914390F — 11

4HRK  2.06380119410F — 10

CONCLUSION

In this paper, six (6) problems of different nature
particularly linear and nonlinear problems have been
numerically solved by the derived methods and
compared with some standard numerical methods
mentioned from the relevant literature. It may be
observed from the tables (1-6) , that the maximum
global error produced by some of the derived
methods specifically the arithmetic mean viewed
higher derivative methods performed better on linear
problems while the other types of mean viewed
higher derivative methods that is the geometric mean,
heronian mean or harmonic mean; performed better
on the nonlinear problems. Hence, it would not be out
of point to say that the arithmetic mean viewed higher
derivative methods performed favorably than the
other types of mean viewed higher derivative
methods when used to solve some linear initial value
problems while other types of mean viewed higher
derivative methods performed better than the
arithmetic mean viewed higher derivative methods
when used to solve non-linear initial value problems.
The error analysis: local truncation error,
consistency, convergence and stability where
investigated wherein they exhibited satisfactory
performance. The stability region of the derived

methods displayed on Figure 1 revealed that the new
methods are stable like every other existing
numerical methods in the relevant literature.
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