
328 Available Online at www.ijscia.com | Volume 6 | Issue 2 | Mar – Apr 2025  
 

 

 
 

 
 
 

 

Building AI-Driven Cloud-Native Applications  
with Kubernetes and Containerization 

 

Prudhvi Naayini  
 

Independent Researcher 
 

Corresponding author: naayini.prudhvi@gmail.com 
 

ABSTRACT 
Modern enterprises increasingly deploy AI-driven services in cloud environments, demanding scalable 
infrastructure that aligns machine learning operations (MLOps) with cloud-native principles. This paper 
proposes a Kubernetes-based architecture for developing and deploying AI applications, emphasizing 
containerization, orchestration, and continuous delivery. The architecture supports end-to-end MLOps 
workflows from training and versioning to real-time inference and monitoring using open-source tools on 
managed Kubernetes services (e.g., Amazon EKS, Azure AKS, Google GKE). Core components include Kubeflow 
Pipelines for orchestration, Ml flow for model registry, Argo Workflows for automation, and serving frameworks 
such as TensorFlow Serving and ONNX Runtime for scalable inference. Cloud-native features like autoscaling, 
service mesh, observability, and security are integrated using tools such as Prometheus, Grafana, Trivy, and Vault. 
The architecture is validated through two use cases: an e-commerce recommendation service and an IoT 
anomaly detection pipeline, with a proof-of-concept deployed on AWS. Experimental results demonstrate low-
latency inference (95th percentile latency under 120, ms at 100 requests/s) and efficient resource utilization. 
The platform enhances reproducibility, monitoring, and deployment speed over traditional ML deployment 
approaches. These findings highlight the advantages of Kubernetes-native MLOps for scalable, reliable AI systems 
in production environments. 
 

Keywords: Cloud Computing; Kubernetes; MLOps; Machine Learning; Deep Learning; DevOps; Containerization; 
Autoscaling; Microservices; IoT; E-commerce. 
 
I. INTRODUCTION  
Artificial intelligence (AI) and machine learning are 
being deployed across nearly every industry, from 
personalized recommendations in e-commerce to real-
time analytics in Internet of Things (IoT) scenarios. As 
organizations incorporate predictive models into 
production services (e.g., sales forecasting, anomaly 
detection), they face the challenge of maintaining and 
scaling these models with the same rigor as traditional 
software microservices. This convergence of AI 
development and robust operations has led to the 
emergence of Machine Learning Operations (MLOps) – 
a set of practices to reliably deploy and manage ML 
models in production. 
 
Kubernetes has rapidly become a cornerstone of 
cloud-native computing and is increasingly the 
platform of choice for MLOps deployment. Originally 
open-sourced by Google, Kubernetes automates 
container scheduling, scaling, and management, and 
is now adopted by over half of organizations 
worldwide [1]. Its inherent features – self-healing, 
horizontal scaling, load balancing, and declarative 
deployments provide an ideal substrate for AI 
microservices. By containerizing 
  
ML workloads and orchestrating them on 
Kubernetes, teams can achieve reproducibility and 
scalability in model training and inference. Major 

cloud providers offer managed Kuber- notes services 
(Amazon EKS, Azure AKS, Google GKE) that abstract 
away control plane management and improve 
reliability; for example, Amazon EKS manages the 
Kubernetes control plane across availability zones for 
high availability and automates node provisioning. 
 
Despite the availability of cloud-specific ML platforms 
(e.g., AWS SageMaker, Azure ML), these proprietary 
solutions often operate as black boxes with limited 
flexibility. In contrast, an open, cloud-agnostic MLOps 
architecture built on Kubernetes can provide 
modularity, transparency, and control over the entire 
ML lifecycle. Prior works have proposed various 
components of such an open architecture: for 
instance, Fursin et al. introduced CodeReef, an open 
platform for portable MLOps emphasizing 
reproducible model deployment and benchmarking; 
One Click Deep Learning (OCDL) provides tools for 
encapsulation, resource sharing, and model 
versioning. Alibaba’s LinkEdge project extends 
MLOps to IoT edge devices, automating data 
collection, training, and deployment in distributed 
environments. However, these solutions address 
portions of the pipeline and often lack integration or 
ease of use. There remains a need for a unified 
framework that combines best-of-breed open-source 
tools into a cohesive pipeline, leveraging Kubernetes 
to orchestrate end-to-end workflows.

International Journal of Scientific Advances 

ISSN: 2708-7972 

Volume: 6 | Issue: 2 | Mar – Apr 2025 Available Online: www.ijscia.com  

DOI:  10.51542/ijscia.v6i2.15 

 

 

http://www.ijscia.com/
https://orcid.org/0009-0009-5010-2092


329 Available Online at www.ijscia.com | Volume 6 | Issue 2 | Mar - Apr  2025  
 

International Journal of Scientific Advances                                                                                                 ISSN: 2708-7972 
    

 

A. Purpose and Scope 
In this work, we present a full-stack approach to 
building AI-driven cloud-native applications using 
Kubernetes and containerization. The goal is to bridge 
academic rigor and real-world requirements by 
proposing a novel architecture that integrates MLOps 
best practices (continuous integration/deployment of 
ML, automated retraining, monitoring) with cloud-
native features (microservices, autoscaling, 
infrastructure-as-code). We focus on machine learning 
and deep learning use cases, with an emphasis on the 
operational pipeline (MLOps) including model 
training, version control, deployment, and monitoring 
in production. The architecture is designed to be cloud-
agnostic and extensible, demonstrated using open-
source components deployed on a managed Ku- 
bernetes service. We specifically target two 
representative domains: e-commerce, featuring an AI-
driven recommendation service; and IoT, featuring a 
real-time sensor analytics and anomaly detection 
system. These use cases allow us to evaluate the 
platform’s ability to handle both request-driven 
microservice loads and streaming data pipelines. 
 
B. Contributions 
The contributions of this paper are as follows: 
1) We propose a Kubernetes-native MLOps 

architecture that integrates a modular set of 
open-source tools (including Kubeflow/Argo for 
pipeline orchestration, MLflow for model 
registry, TensorFlow Serving, and ONNX for 
model inference, Prometheus/Grafana for 
observability, and others) to cover the entire ML 
lifecycle in a cloud environment. 
 

2) We introduce several novel enhancements to 
improve real-time inference performance and 
cost-efficiency, such as combining Kubernetes 
autoscaling mechanisms with ML model 
workload characteristics, and employ- ing 
optimized model formats (e.g., ONNX) for cross-
framework portability. 

 
3) We implement a proof-of-concept on AWS EKS 

and conduct an experimental evaluation with both 
batch and streaming workloads. We benchmark 
the system on metrics including inference latency, 
throughput, resource utilization, and cost, 
comparing scenarios with and without our 
architecture’s optimizations (e.g., autoscaling, 
pipeline automation). 

 
4) We address practical deployment aspects often 

overlooked in academic prototypes including 
container security scanning, secrets management, 
and hybrid cloud deployment, and demonstrate 
that these can be integrated without significant 
overhead. To the best of our knowledge, this is one 
of the first works to comprehensively combine all 
these elements into a single MLOps platform 
blueprint. 

 
C. Paper Organization 
The remainder of this paper is organized as follows: 
Section II reviews related work in MLOps platforms 
and cloud-native machine learning deployments. 

Section III details the proposed architecture, 
describing each component and its role in the end-to-
end pipeline. Section IV outlines the experimental 
setup, including the use case implementations and 
measurement methodology. Section V presents 
results and an analysis of the system’s performance 
and scalability. Section VI provides a discussion on 
the implications, best practices, and lessons learned, 
as well as the current limitations and future 
improvements. Finally, Section VII concludes the 
paper. 
 
II. RELATED WORK 
Combining machine learning workflows with cloud-
native infrastructure is an area of active development 
in both industry and academia. We review existing 
approaches in MLOps and cloud services, focusing on 
how they inform our integrated solution. 
  
A. MLOps Platforms 
MLOps has emerged to bridge the gap between 
model development and reliable operations. A 
variety of platforms exist on a spectrum from 
proprietary to open-source. On the proprietary end, 
cloud providers offer managed services like Amazon 
SageMaker and Azure Machine Learning that 
integrate training, deployment, and monitoring. 
These services ease the engineering burden but can 
limit flexibility and portability [2]. For example, 
SageMaker provides one-click deployment of 
models as scalable endpoints, but the stack is tightly 
coupled to AWS infrastructure. In contrast, open-
source frameworks aim to provide similar 
capabilities without vendor lock-in. Kubeflow is a 
prominent open-source MLOps platform that runs 
on Kubernetes, released by Google in 2018 with 
contributions from Cisco, IBM, Red Hat, and others 
[3]. Kubeflow ties together components for each 
stage of the ML lifecycle such as Jupyter notebooks 
for development, Kubeflow Pipelines (on Argo or 
Tekton) for workflow automation, and KServe 
(formerly KFServing) for model serving all 
orchestrated-on Kubernetes for portability. It 
ensures that ML workflows (training, tuning, 
serving) can scale on a cloud cluster just like any 
microservice. Another tool, MLflow (from 
Databricks), focuses on experiment tracking and 
model registry and can complement Kubeflow by 
handling model versioning and reproducibility [4]. 
Our architecture leverages these open tools 
(Kubeflow, MLflow) in a complementary fashion, 
rather than viewing them as exclusive choices. As 
illustrated in Figure. 1, the MLOps lifecycle in a 
Kubernetes-based environment involves a series of 
stages starting from data ingestion to monitoring. 
CI/CD integration ensures auto-mated, reproducible 
deployments within this pipeline. 
 
Recent research has proposed various open-source 
MLOps frameworks. CodeReef is an example 
targeting portable MLOps and reproducible 
benchmarking of ML models; it emphasizes 
automation of model deployment with DevOps 
principles. One Click Deep Learning (OCDL) 
provides an integrated suite including encapsulation 
of environments, resource sharing, and one-click 

http://www.ijscia.com/


330 Available Online at www.ijscia.com | Volume 6 | Issue 2 | Mar - Apr  2025  
 

International Journal of Scientific Advances                                                                                                 ISSN: 2708-7972 
    

 

model deployment. LinkEdge, an open-source effort 
by Alibaba, is tailored for edge computing and IoT—
automating data ingestion from IoT devices, training 
at the edge or cloud, and model updates, effectively 
extending MLOps to constrained devices. Each of 
these addresses important aspects, but they often 
operate in isolation or focus on specific contexts 
(e.g., IoT only). A recent review by Wazir et al. 
(2023) surveys MLOps frameworks and highlights 
that while many solutions exist, a gap remains in 
combining all required capabilities (data, training, 
deployment, monitoring) into one cohesive, 
community-driven platform. Our work builds upon 
these insights by integrating multiple open-source 
components (selected for their maturity and 
community support) into a unified architecture. 
 
Table 1 compares Kubernetes and SageMaker across 
critical dimensions such as scalability, cost, and 
integration flexibility. Kubernetes provides greater 
control and open-source extensibility, while 
SageMaker offers a managed experience optimized 
for rapid onboarding. 
 

 
 

FIGURE 1: End-to-End MLOps Lifecycle in 
Kubernetes-based Environments. 

 
TABLE 1: Comparison of Kubernetes Vs Sagemaker 
For AI Workloads. 
 

Aspect Kubernetes SageMaker 

Control 
Full control over 
infra 

Managed, 
abstracted infra 

Scalability 
Highly 
customizable 
(KEDA, HPA) 

Built-in 
autoscaling 

Cost 
More granular 
control; cheaper 
at scale 

Expensive with 
managed 
features 

ML Workflow 
Tools 

Integrates with 
MLflow, 
Kubeflow, Argo 

Native tools 
(Pipelines, 
JumpStart) 

Security 
Self-managed  
IAM, Secrets 

Integrated IAM 
and encryption 

 
B. Cloud-Native Microservices for ML 
The adoption of containerization and microservice 

architecture for AI workloads is evident in industry 
systems. Uber’s Michelangelo platform and 
Facebook’s FBLearner Flow are notable internal 
platforms that manage the ML lifecycle at scale, 
though details are proprietary. These systems 
inspired open-source analogs [3]. For example, 
TensorFlow Extended (TFX) is Google’s pipeline 
framework which, when combined with Kubeflow, 
can run on Kubernetes to orchestrate data ingestion, 
training, and deployment pipelines in a cloud-native 
way. In serving models, companies have leveraged 
Kubernetes orchestration to enable dynamic scaling 
and high availability. Kubernetes supports mix-and-
match resource scheduling—e.g., a cluster may have 
CPU-only nodes and GPU nodes, and pods can be 
scheduled accordingly for training or inference 
workloads. This flexibility is crucial for deep 
learning models that require GPUs for training but 
can sometimes infer on CPU at scale [5]. Our 
architecture exploits this by using node selectors 
and taints to allocate heavy training jobs to GPU 
nodes (managed by NVIDIA’s GPU Operator for 
driver provisioning) and lighter-weight inference to 
CPU nodes, while still using one unified Kubernetes 
control plane [6]. 
 
C. Autoscaling and Performance Optimization 
Autoscaling is a key feature for cloud services to 
handle variable loads efficiently. Kubernetes 
provides a Horizontal Pod Autoscaler (HPA) that can 
scale the number of pod replicas based on metrics 
like CPU utilization or custom metrics. In ML serving, 
autoscaling can be based on request concurrency or 
latency targets. KServe (KFServing) uses Knative 
Serving under the hood to enable scale-to-zero and 
rapid scaling for inference workloads. Empirical 
studies have shown that enabling concurrency-
based autoscaling keeps model latency low under 
bursty loads, compared to static provisioning [7]. 
Event-driven auto scalers like KEDA extend this to 
scale on external metrics (e.g., Kafka queue length 
for streaming jobs) [8]. We incorporate autoscaling 
on multiple levels: at the pod level for inference 
deployments, and the cluster level using the Cluster 
Autoscaler to add nodes when needed. In our 
experiments, this combination yields significant 
latency improvements and cost savings (detailed in 
Section V). 
 
D. Monitoring and Observability 
Once models are in production, monitoring their 
performance is essential. Open-source tools such as 
Prometheus (for metrics scraping) and Grafana (for 
dashboards) are commonly used in cloud-native 
stacks and are equally applicable to ML services [7]. 
They can track system metrics (CPU, memory, GPU 
utilization) and custom application metrics (e.g., 
inference latency per model, prediction throughput, 
and error rates). Advanced monitoring may include 
data drift detection e.g., using statistical tests on 
input feature distributions and model performance 
monitoring by comparing predictions to ground 
truth when available. The open-source library 
Evidently [9]. AI or Seldon’s Alibi Detect can be 
deployed alongside models to detect drift in data or 
concepts. 

http://www.ijscia.com/


331 Available Online at www.ijscia.com | Volume 6 | Issue 2 | Mar - Apr  2025  
 

International Journal of Scientific Advances                                                                                                 ISSN: 2708-7972 
    

 

Our architecture includes a monitoring subsystem 
where Prometheus gathers metrics from all 
components (applications expose metrics via 
endpoints) and Grafana visualizes them. Alerts can 
be set (e.g., if model accuracy degrades or if drift is 
detected, trigger an alert or even an automated 
retraining pipeline). This closes the loop in the 
MLOps cycle. 
 
E. Security and Reproducibility 
In production environments, the security of the ML 
pipeline is paramount but often neglected in 
academic prototypes [10]. Containerization itself 
provides isolation, but images must be kept free of 
vulnerabilities. Tools like Trivy (an open-source 
vulnerability scanner) can be integrated into the 
continuous integration pipeline to scan Docker 
images for known CVEs before deployment. Secrets 
(credentials for databases, API keys, etc.) should not 
be baked into images or code; instead, Kubernetes 
secrets or vaults should be used. HashiCorp Vault is 
a popular tool for managing secrets and can be used 
to inject secrets into pods at runtime securely. Our 
implementation uses Vault to manage sensitive 
information like database passwords for the feature 
store and Kafka credentials, ensuring that the GitOps 
workflows contain no plaintext secrets [11]. 
Moreover, the use of Infrastructure-as-Code (IaC) 
and GitOps (e.g., using tools like Argo CD or Flux) for 
deploying the Kubernetes manifests ensures that the 
entire infrastructure and pipeline configuration is 
version-controlled and reproducible. This also aids 
academic rigor, as experiments can be re-run by 
replaying the pipeline definitions on a new cluster to 
obtain the same results, satisfying the repeatability 
requirement. 
 
In summary, while many building blocks for cloud-
native MLOps exist, our work distinguishes itself by 
combining them into an end-to-end solution. We 
borrow ideas and best practices from the above-
related efforts and assemble an architecture that 
spans data ingestion, model training, continuous 
integration, deployment, scaling, monitoring, and 
security. The next section details this architecture 
and how each component is incorporated to work in 
concert on Kubernetes. 
 
III. PROPOSED ARCHITECTURE 
A. Overview 
The proposed architecture is a cloud-native MLOps 
platform built entirely on Kubernetes using 
containerized components. Figure 2 illustrates the 
high-level design, showing how data flows from 
ingestion to model training to inference serving, 
with supporting components for storage, 
orchestration, and monitoring. The architecture is 
designed to be modular – each component can be 
replaced with an equivalent as needed (for example, 
Seldon Core could substitute KServe, or Tekton 
could replace Argo) – and cloud-agnostic, requiring 
only a Kubernetes-conformant cluster [4]. We 
highlight key architectural decisions: separation of 
concerns via microservices and operators, reliance 
on Kubernetes controllers for automation (e.g., the 
NVIDIA GPU Operator for hardware management), 

and leveraging managed cloud services where 
appropriate (like managed databases or object 
storage for persistence). Around the pipeline 
orchestrator, we have complementary services: 
 
B. Feature Store 
In many ML applications, especially those involving 
IoT and real-time features, a feature store is used to 
manage feature engineering artifacts. We 
incorporate Feast as an optional component for 
feature storage, with a PostgreSQL offline store and 
Redis online store (for low-latency retrieval of 
features for inference). For example, in the e-
commerce use case, precomputed user embedding 
features or product statistics are stored in Feast so 
that both training jobs and the live inference service 
use a consistent view of features. The feature store 
ensures consistency between training and serving 
data transformations. 
 

 
 

FIGURE 2: Proposed Kubernetes-native MLOps 
architecture integrating pipelines, registry, feature 
store, streaming, inference, and monitoring on 
Kubernetes. 
 
C. Data Ingestion and Streaming 
For the IoT use case, streaming data ingestion is 
crucial. We deploy Apache Kafka (via Strimzi 
Operator on Kubernetes) as the backbone for 
ingesting real-time data. IoT sensor readings are 
published to Kafka topics. On the platform, we 
implement consumers using Kafka Streams or 
Bytewax (a Python stream processing library) to 
perform real-time data processing and feed the 
results into the feature store or directly into inference 
requests. Kafka decouples the data producers (IoT 
devices, or a simulation thereof) from the consumers 
(our processing pipeline and models). It also buffers 
bursts and provides backpressure handling. In our 
architecture, Kafka is integrated with Kubernetes via 
an operator, and we use Kubernetes Event-Driven 
Autoscaling (KEDA) to scale consumers based on 
queue length if needed. 
 
D. Model Training Component 
Model training jobs are run as containerized 
Kubernetes Jobs (batch jobs). These can be triggered 
manually, on a schedule (CronJob), or automatically 
by pipeline workflows (e.g., an Argo workflow step 
spawns a training job). We packaged training code 
(for instance, a TensorFlow training script for the 
recommender model, and a PyTorch training script 

http://www.ijscia.com/


332 Available Online at www.ijscia.com | Volume 6 | Issue 2 | Mar - Apr  2025  
 

International Journal of Scientific Advances                                                                                                 ISSN: 2708-7972 
    

 

for the IoT anomaly model) into Docker images. 
When launched, these jobs read training data (from 
a cloud object storage or database), train the ML 
model, and then save the resulting model artifacts 
(e.g., .pth file for PyTorch or SavedModel for 
TensorFlow) to a Model Artifact Store. We use an S3- 
S3-compatible object store (MinIO in testing, 
Amazon S3 in production) for storing model 
artifacts and any metadata files. The training jobs 
report metrics and parameters to MLflow Tracking, 
enabling experiment tracking. Multiple training jobs 
can run in parallel on the cluster, utilizing different 
resources as needed. We exploit Kubernetes 
scheduling features to ensure heavy jobs land on 
nodes with sufficient resources (using node labels 
like gpu=true for GPU nodes). 
  
E. Model Registry and Metadata 
We integrate MLflow as the central model registry. 
After a training job finishes, it registers the new model 
version in MLflow along with metadata (parameters, 
metrics, tags, source commit, etc.). MLflow provides a 
UI to compare experiments and transition models 
through stages (e.g., Staging to Production). In our 
setup, the MLflow server runs in-cluster and uses a 
SQL database for metadata and the object store for 
artifacts. This model registry ensures that all 
deployed models are traceable to a training run and 
versioned. It also enables easy rollback or A/B testing 
by deploying specific versions. 
 
F. Model Serving and Inference 
For serving predictions, we adopt a microservice 
approach. Each ML model is packaged as a scalable 
service on Kubernetes. We utilize two patterns: 
(a) TensorFlow Serving for TensorFlow models 

and TorchServe for PyTorch models, both of 
which are efficient for their respective 
frameworks. 

(b) ONNX Runtime for models converted to the 
Open Neural Network Exchange format, 
enabling hardware-optimized inference across 
frameworks. 

 
In our e-commerce recommendation example, the 
model (a deep neural network) is exported to 
TensorFlow SavedModel format and served using 
TensorFlow Serving pods behind a Kubernetes 
Service [12]. In the IoT anomaly example, the model 
(trained in PyTorch) is converted to ONNX, and we 
serve it using an ONNX Runtime container, allowing 
us to later compare performance on CPU vs. GPU. We 
also experiment with KServe (KFServing) as an 
overarching serving platform: KServe can deploy 
models with inference pods and automatically 
handle routing and scaling (including scale-to-zero 
for unused models). KServe integrates with Knative, 
meaning that inactive model services consume no 
resources – a cost-saving feature particularly useful 
for sporadically used models. In either case, we 
expose the inference service via an API (REST or 
gRPC). For e-commerce, a REST endpoint (with 
FastAPI for additional business logic) calls the model 
server. For IoT streaming, the model server can be 
called directly from the stream processing job or set 
up as a subscriber to Kafka (e.g., using KServe’s 

Kafka trigger). 
 
G. Autoscaling Mechanisms 
We configure autoscaling at multiple levels. The 
Horizontal Pod Autoscaler (HPA) is set on the 
inference deployment (if using a plain Deployment 
for the model server) to scale based on CPU 
utilization or custom metrics (such as requests per 
second). In our tests, we use a custom Prometheus- 
-adapter metric for “requests in flight” to trigger 
scaling when concurrency goes beyond a threshold, 
ensuring latency remains low. The cluster itself runs 
the Cluster Autoscaler to add VM instances when 
there are pending pods that cannot be scheduled 
due to resource constraints. On AWS EKS, this ties 
into AWS Auto Scaling Groups – we have one group 
for CPU nodes and one for GPU nodes. For instance, 
if a training job requests a GPU and none is free, the 
Cluster Autoscaler will spin up a new GPU EC2 
instance. This dynamic pro-visioning adds elasticity 
to handle heavy workloads without permanently 
running expensive resources. We also explore 
Kubernetes Vertical Pod Autoscaler in analysis 
mode to see if memory/CPU requests for pods can 
be optimized, though we keep it manual in 
deployment to avoid unexpected restarts. As a result 
of these autoscaling setups, our system can handle 
spikes in inference demand (common in e-
commerce during promotions) and scale down to 
reduce cost during idle periods. 
 
H. Monitoring, Logging, and Observability 
Every component is instrumented with logging and 
metrics. Prometheus is deployed to scrape metrics 
from the Kubernetes metrics server as well as 
custom application metrics. We use Grafana 
dashboards to visualize key indicators: model 
interference latency distribution, throughput over 
time, CPU/GPU utilization per pod, Kafka queue 
lengths, etc. (see Section V for an example 
dashboard). Additionally, we enable Kubernetes 
event logging and aggregate container logs. In a 
production scenario, one might use an ELK 
(Elasticsearch-Logstash- Kibana) stack or a cloud 
logging service; in our prototype, we use EFK 
(Fluentd instead of Logstash) to collect logs from 
pods and push to Elasticsearch, enabling search and 
troubleshooting via Kibana. For monitoring model 
quality, we schedule a periodic job that computes 
performance metrics on a validation dataset and 
compares current metrics to past – if a significant 
drop is detected, it flags for potential model drift. 
This is an example of automated monitoring that can 
trigger the pipeline (e.g., start a retraining 
workflow) if needed, creating a closed-loop learning 
system. 
 
I. Security and DevOps Integration 
Security is woven throughout the architecture. The 
container images for all components and custom 
code are stored in a private registry; a CI pipeline 
(using GitHub Actions in our case) builds these 
images and runs Trivy scans to detect 
vulnerabilities, failing the build if high-severity 
issues are found. This ensures that only vetted 
images get deployed to the cluster. 

http://www.ijscia.com/


333 Available Online at www.ijscia.com | Volume 6 | Issue 2 | Mar - Apr  2025  
 

International Journal of Scientific Advances                                                                                                 ISSN: 2708-7972 
    

 

All network communication inside the cluster is 
encrypted where possible (e.g., TLS for connections 
to MLflow, Kafka, etc.). We also enable Kubernetes 
Role-Based Access Control (RBAC) so that, for 
example, the MLflow pod only has the access rights 
it needs, and cannot access unrelated resources. For 
secrets, as mentioned, we use HashiCorp Vault, 
which is set up with a Kubernetes auth backend – 
pods can retrieve secrets (like database passwords, 
and API keys for external services) at runtime by 
presenting a token, and Vault injects the secrets as 
environment variables. This avoids storing any 
sensitive info in Git or plaintext on disk. Finally, to 
streamline operations, we adopted GitOps for 
deploying the Kubernetes manifests of our platform. 
A GitOps tool watches a Git repository (where we 
store all YAML manifests for deployments, services, 
etc.) and applies any changes to the cluster. This 
means our entire infrastructure (including pipeline 
definitions and configuration) is version-controlled. 
Team members can review changes as pull requests, 
improving collaboration and auditability. In 
addition to technical robustness, ethical 
considerations like bias mitigation and fairness 
must be integrated into MLOps pipelines [13]. 
 
The architecture is cloud-agnostic: while our 
implementation targets AWS (using EKS, S3, etc.), 
the design uses either open-source equivalents or 
managed services that have analogs in other clouds 
(for instance, GCP’s Cloud Storage instead of S3, GKE 
instead of EKS). We explicitly kept the solution 
portable by avoiding proprietary APIs. In a hybrid 
cloud or on-premises scenario, one could deploy the 
same stack on a self-managed Kubernetes cluster. 
For IoT edge integration, Kubernetes’ extensibility 
allows using KubeEdge to connect edge devices as 
part of the cluster. Although not fully implemented 
in our current work, our architecture could be 
extended so that certain pipeline components run on 
edge nodes (close to IoT devices) using KubeEdge, 
with the cloud cluster aggregating results achieving 
a hybrid deployment for latency-sensitive tasks. 
 
In summary, the proposed architecture brings 
together a comprehensive set of services and tools 
under the management of Kubernetes. By using 
containerization and open standards (like ONNX for 
models, and CNCF projects for logging/metrics), we 
ensure the solution is extensible and maintainable. 
The next section describes how we deployed this 
architecture in practice and the specifics of our 
experimental setup for the two use cases. 
 
IV. EXPERIMENTAL SETUP 
To demonstrate the effectiveness of our cloud-
native MLOps architecture, we implemented a 
prototype on a real cluster and designed 
experiments around two motivating use cases: an e-
commerce recommendation system and an IoT 
anomaly detection system. Below, we describe the 
deployment environment, the specifics of each use 
case application, and the methodology for our 
performance evaluation. 
 
 

A. Cluster Environment 
The prototype was deployed on Amazon Web 
Services (AWS) using Amazon Elastic Kubernetes 
Service (EKS). We used an EKS cluster running 
Kubernetes version 1.24, spread across two AWS 
availability zones for high availability. We defined 
two node groups: one for general computing and one 
for GPU-accelerated tasks. The general node group 
consisted of m5.xlarge instances (4 vCPU, 16 GB 
RAM each), and the GPU node group consisted of 
p3.2xlarge instances (one NVIDIA V100 GPU, 8 
vCPU, 61 GB RAM). Initially, the cluster was 
configured with 3 general nodes and 1 GPU node, 
with the Cluster Autoscaler allowed to scale each 
group up to 6 nodes based on demand. 
 
All nodes ran Amazon Linux 2 with Docker and the 
NVIDIA Container Toolkit installed. We deployed the 
NVIDIA GPU Operator on the cluster, which 
automated GPU driver installation and set up the 
Kubernetes device plugin for GPUs so that 
containers could seamlessly access GPU resources. 
The GPU Operator also labeled the GPU nodes and 
managed monitoring of GPU utilization. 
  
B. Tool Deployment 
Following the architecture design, we installed the 
required tools in the cluster: 
 Kubeflow Pipelines: Instead of the full Kubeflow 

distribution, we installed just Kubeflow Pipelines 
standalone (which includes Argo Workflows) for 
lightweight operation. The pipelines UI and Argo 
workflow controller were accessible via a secure 
ingress. 
 

 MLflow: Deployed as a single pod with a backing 
MySQL database (Amazon RDS) for tracking 
metadata. We used an S3 bucket for MLflow 
artifact storage. Although authentication could 
have been handled by Cognito in a production 
scenario, we kept MLflow open within the cluster 
for simplicity. 
 

 Kafka (Strimzi): A three-node Kafka cluster (with 
Zookeeper) was set up using the Strimzi Kafka 
Operator. Each Kafka broker ran on its pod 
(pinned to separate nodes), using hostPath 
storage for logs during these short experiments 
(though durable storage would be recommended 
in production). 
 

 Prometheus and Grafana: Deployed via the 
Prometheus Operator (kube-prometheus stack). 
We created custom scrape targets for MLflow, 
TensorFlow Serving, and the application pods to 
gather domain-specific metrics. 
 

 Ingress & Networking: We used the AWS ALB 
Ingress Controller to expose the inference API to 
external test clients. This provided an external 
URL for sending HTTP requests to the e-
commerce recommendation service. 

 

 CI/CD: Although not fully needed for the 
experiment, we configured a CI pipeline on 
GitHub Actions to build Docker images for our 

http://www.ijscia.com/


334 Available Online at www.ijscia.com | Volume 6 | Issue 2 | Mar - Apr  2025  
 

International Journal of Scientific Advances                                                                                                 ISSN: 2708-7972 
    

 

custom components (the training scripts, the 
FastAPI inference wrapper, etc.) and push them 
to the AWS Elastic Container Registry (ECR). This 
setup mimicked how updates to code might flow 
into the cluster through an automated process. 
 

C. Use Case 1: E-Commerce Recommendation 
Service 

Scenario: An online retail platform wants to provide 
real-time personalized product recommendations to 
users. The ML model is a deep learning model (a 
neural network) that takes a user’s recent activity or 
profile as input and outputs a list of recommended 
products. This must happen with low latency (<200 
ms) to avoid degrading user experience, especially 
during peak shopping hours. The system should also 
allow rapid deployment of new model versions as 
product catalogs or user behaviors evolve. 
 
For this use case, we implemented a simplified 
recommendation model using the public MovieLens 
1M dataset (as a stand-in for e-commerce user-item 
interactions). We trained a matrix factorization 
model augmented with a neural network (often 
termed Neural Collaborative Filtering) that predicts 
the top N items for a given user. The model was 
trained offline in TensorFlow (roughly 20 epochs on 
the GPU node, taking just a few minutes). 
 
The training pipeline was triggered via Kubeflow 
Pipelines, performing: 
1) Data preprocessing (in a container using 

Python/Pandas), 
2) Model training (in a TensorFlow container on 

GPU), 
3) Model evaluation. 
 
After training, the model (in SavedModel format) 
was logged to MLflow and pushed to Amazon S3. We 
then deployed the model for inference using 
TensorFlow Serving. A Kubernetes Deployment was 
created with an initial replica count of 1, based on 
the TensorFlow Serving image, loading the 
SavedModel from the S3 artifact store (mounted via 
an init container). We also built a lightweight 
FastAPI application to call the TF Serving API and 
format the recommendations as JSON; this FastAPI 
app ran as a sidecar container in the same pod (or it 
could be a separate microservice). 
 
We set up an HPA (targeting 70% CPU utilization) 
with min 1 and max 5 replicas. Additionally, we 
enabled Knative on this namespace to potentially 
scale to zero (though in testing we kept at least one 
pod in steady state). The recommendation service 
was exposed at /recommend?user_id=XYZ. We 
simulated user traffic by sending HTTP GET 
requests to this endpoint. 
 
D. Use Case 2: IoT Anomaly Detection 
Scenario: An industrial IoT system has numerous 
sensors on equipment that send readings 
continuously. The goal is to detect anomalies in real-
time (e.g., sensor reading patterns indicating 
potential equipment failure), raising alerts or 
triggering preventative actions. The ML model here 

could be a time-series anomaly detector (e.g., an 
LSTM autoencoder or a one-class SVM) that 
processes a window of sensor data and outputs an 
anomaly score [14]. High throughput data streams 
demand efficient, possibly edge-based inference 
with minimal cloud latency. The system may also 
retrain models periodically as new normal patterns 
emerge and handle multiple models if different 
sensors require different detection logic [15]. 
 
For this use case, we created a synthetic dataset of 
sensor readings (e.g., temperature and vibration 
data). We used a simple autoencoder-based anomaly 
detection approach: train an autoencoder on normal 
data, then classify inputs as anomalous if 
reconstruction error exceeds a threshold [16]. Our 
model was a PyTorch autoencoder. The training was 
done on a historical dataset (which included 
simulated failures for validation). The pipeline for 
training was similar to the e-commerce case, using 
Argo (running on GPU) and logging results to 
MLflow [17]. However, since this data is streaming, 
rather than a request/response service, we built a 
stream processing pipeline. We wrote a Kafka 
Streams application (in Python using Faust) that 
continuously consumed sensor data from a Kafka 
topic, batched it into a time window (e.g., 5 seconds), 
and invoked the anomaly detection model for each 
window [18]. The model inference was done via a 
PyTorch JIT script (exported to TorchScript for faster 
loading) inside the stream processing worker. We 
containerized this stream processor and deployed it 
as a Deployment with two replicas (consumers in a 
consumer group). We also set up KEDA with the Kafka 
scaler to adjust the number of replicas if topic lag 
grew (i.e. if data production outpaced consumption). 
Any anomalies were written to a separate Kafka topic 
or logged for verification [9]. We instrumented code 
to record key metrics (messages processed, average 
inference time, etc.), scraped by Prometheus (via the 
Kafka Consumer JMX metrics and a custom Faust 
exporter). 
 
E. Evaluation Methodology 
We evaluated the system on several key metrics 
aligned with our research goals: 
a) Latency: For the e-commerce service, we 

measured end-to-end API latency (from receiving 
a request to returning recommendations). We 
used Locust (an open-source load testing tool) to 
generate concurrent requests (up to 100 req/s) 
and recorded response times (p50, p95). For the 
IoT pipeline, we measured processing delay – the 
time from a sensor reading’s timestamp until its 
anomaly detection. We instrumented the pipeline 
to capture Kafka event time and subtract it from 
the detection time. 
 

b) Throughput: We gradually increased request 
rates for the recommendation API until the 
system was saturated (either latency exceeded 
acceptable bounds or max replicas were 
reached). Similarly, we increased the sensor 
event production rate in Kafka to determine how 
many messages per second the anomaly pipeline 
could handle before lag built up.

http://www.ijscia.com/


335 Available Online at www.ijscia.com | Volume 6 | Issue 2 | Mar - Apr  2025  
 

International Journal of Scientific Advances                                                                                                 ISSN: 2708-7972 
    

 

c) Resource Utilization: We collected CPU, memory, 
and GPU utilization metrics (via Prometheus) for 
key components, observing how efficiently 
resources were allocated and whether 
autoscaling triggered as expected. During peak 
load, for instance, we expected additional TF 
Serving pods to spin up and CPU nodes to scale 
via the Cluster Autoscaler. 
 

d) Cost Implications: We performed a rough cost 
analysis by converting resource usage to 
approximate cloud cost. For example, we 
compared scenarios: autoscaling vs. a hy- 
hypothetical static provisioning sized for peak 
demand. We calculated EC2 instance-hours used 
(with autoscaler scaling nodes up/down) and 
compared it to a fixed 6-node cluster always 
running. This provided an estimate of cost 
savings from elasticity. 

 

e) Accuracy/Quality: While our main focus was 
system performance, we also ensured ML model 
accuracy remained intact. We recorded the 
recommendation hit rate (whether the 
recommended items included those users 
ultimately chose) and the anomaly detector’s 
precision/recall on labeled data. Containerization 
and conversion to ONNX or TorchScript do not 
inherently degrade model accuracy, but we 
confirmed no numerical discrepancies occurred. 

 

f) Deployment Speed and Reproducibility: We 
documented the time required to spin up the 
entire environment using our IaC scripts 
(demonstrating ease of reproducibility) and 
measured how long it took to roll out a new model 
version from MLflow to production (generating a 
new serving container). These operational 
metrics highlight how De- vOps/MLOps synergies 
shorten the model update cycle. 

 

Each experiment was run multiple times to ensure 
consistency. For load testing, each level of load was 
maintained for multiple minutes to reach a steady 
state. We also performed failure injection tests (e.g., 
killing a pod to confirm Kubernetes self-healing) and 
simulated node failure to observe how workloads 
shifted across availability zones. The following 
section presents our experimental results and 
analysis, focusing on how autoscaling impacted 
latency and cost, as well as any bottlenecks 
encountered with both e-commerce and IoT 
workloads. 
 

V. RESULTS AND ANALYSIS 
We now discuss the results of our experiments, 
focusing on the performance and scalability of the 
system, and evaluating how well the architecture 
met our objectives. The results are organized by the 
key metrics outlined earlier, and figures/tables 
illustrate the findings. 
 

A. Scalability and Latency (E-commerce Use Case) 
We tested the recommendation service under 
varying request loads, from 5 req/s up to 100 req/s. 
Figure 3 plots the 95th-percentile response latency 
as a function of request rate, comparing scenarios 

with autoscaling enabled vs. a fixed single replica. As 
the load increased, the autoscaling configuration 
maintained significantly lower latencies. At 50 
req/s, the autoscaling deployment had scaled to 2 
pods, keeping p95 latency around ∼80 ms, whereas 
the single-pod deployment’s p95 latency rose to 
∼170 ms. At 100 req/s, autoscaling used 4 pods and 
maintained a p95 latency of ∼110 ms, while the 
single-pod setup exceeded 600 ms (requests were 
queuing). This demonstrates that the Kubernetes 
HPA effectively added capacity to meet demand and 
preserve user experience. 
 
Autoscaler events occurred around 40 req/s and 75 
req/s in our test. Scale-up took tens of seconds (new 
pods must start), during which a slight latency spike 
was observed, but it quickly stabilized [8]. Once the 
load subsided, scale-down events occurred after the 
cool-down period, and pods terminated gracefully. 
These results validate one of our key hypotheses: 
combining Kubernetes autoscaling with 
containerized ML inference yields near-linear 
scalability up to cluster limits. In our cluster, we 
capped at 120 req/s with a maximum of 5 pods 
across 5 nodes. Adding static pods without 
autoscaling could improve throughput but would 
waste resources during low demand. 
 
Throughput is scaled roughly linearly with the 
number of pods. At 100 req/s, the autoscaling 
system processed ∼864,000 recommendations over 
2.5 hours with no errors, whereas the single-pod 
system timed out requests beyond ∼80 req/s. This 
shows the architecture can handle bursty traffic 
typical in e-commerce (e.g., flash sales) by 
provisioning extra pods and potentially extra nodes. 
 
B. Streaming Performance (IoT Use Case) 
In the IoT anomaly detection pipeline, we measured 
how many sensor messages per second could be 
processed with the initial 2 replicas of the stream 
processor. Steady-state, each replica consistently 
handled ∼200 msg/s, for a total of ∼400 msg/s, with 
an average end-to-end processing latency of 1.2 s 
(including a 1 s windowing delay). The model 
inference itself was fast (∼10 ms) since the 
autoencoder was small. We increased the sensor 
message rate up to 1000 msg/s. At ∼600 msg/s input, 
Kafka lag started growing, indicating the processing 
was not keeping up. At that point, KEDA triggered a 
scale-up to 3 replicas, sustaining 600 msg/s with 
negligible lag and ∼1.5 s overall latency (some 
overhead from coordination). At 1000 msg/s, we 
eventually scaled to 5 replicas and saw minor lag 
(backlog of a few hundred messages), which caught 
up once input decreased. No message loss was 
observed. The anomaly detection accuracy remained 
unaffected by parallelism, demonstrating the partition 
strategy and concurrency model were robust. 
 
We also checked the anomaly detection metrics: the 
autoencoder correctly detected 90% of injected 
anomalies at a 5% false positive rate, matching 
offline tests and indicating that conversion to ONNX 
(if used) or containerization did not degrade 
accuracy [7].

http://www.ijscia.com/


336 Available Online at www.ijscia.com | Volume 6 | Issue 2 | Mar - Apr  2025  
 

International Journal of Scientific Advances                                                                                                 ISSN: 2708-7972 
    

 

 
 
FIGURE 3: Inference latency (95%ile) vs. request 
rate for the e-commerce recommendation service. 
Without autoscaling (single pod), latency grows 
rapidly beyond 50 req/s. With Kubernetes HPA 
autoscaling (up to 5 pods), latency remains low even 
as throughput increases, demonstrating effective 
scalability. 
 
C. Resource Utilization and Efficiency 
We collected resource usage metrics throughout the 
experiments. For the recommendation service at 
moderate load (20 req/s), each TensorFlow Serving 
pod used ∼0.5 vCPU; at high load, up to 1.5 vCPU. 
Memory usage held around 200 MB per pod. CPU 
nodes hovered at 60–70% utilization when 4 TF 
Serving pods were spread across them, suggesting 
healthy resource usage. The GPU node usage peaked 
during training (70% utilization for ∼3 minutes), 
then scaled down after an idle timeout. This 
highlights the advantage of on-demand GPU 
resources for periodic training. 
 
For the IoT streaming pipeline, each replica used 
∼0.7 vCPU at 200 msg/s. When scaling to 5 pods at 
1000 msg/s, each used ∼0.6 vCPU. The overhead of 
extra pods remained minimal since Kafka partitions 
balanced the load effectively. 
  
D. Observability and Debugging 
A Grafana dashboard monitored request rate vs. 
response time, pod CPU/memory, Kafka consumer 
lag, and GPU memory usage. During tests, autoscaling 
events were visible in real-time. For instance, an alert 
triggered at p95 latency >150 ms; by the time we 
investigated, the HPA had spun up more replicas, 
returning latency to normal. We also observed a 
latency spike correlated with a new node starting and 
pulling a large Docker image (the TF Serving 
container had CUDA libraries). This suggests using 
smaller images or a warm cache could improve scale-
up times. Aggregated logs confirmed no errors 
occurred in TF Serving or FastAPI under load, 
validating the reliability gains from autoscaling. 
 
E. Cost Analysis 
While our experiments were short, we extrapolated 
some cost implications. Consider a daily traffic 
pattern for the e-commerce site, with 1 replica at 
night and 4–5 replicas at peak midday.  
 
 

Autoscaling might average ∼2 nodes over 24 hours, 
costing $8.16/day (assuming $0.17/hour for 
m5.xlarge), whereas static 4 nodes would cost 
$16.32/day. This is roughly a 50% cost reduction. 
Similarly, for the GPU node (costing~ $3/hour), using 
on-demand or spot instances only when training 
reduced GPU costs by 70–80%. Thus, the 
architecture’s automation directly meets the cost-
optimized inference goal. 
 
F. Reproducibility and Deployment Agility 
Deploying the entire stack to a fresh EKS cluster took 
under 30 minutes using IaC scripts, mostly due to 
container image pulls and cloud resource 
provisioning. Model update cycles (e.g., retraining, 
pushing new images) took ∼15 minutes total, 
including a 5-minute training job and 10 minutes for 
CI/CD validation and redeployment. This marks a 
significant improvement over manual processes, 
showcasing how MLOps and DevOps synergy 
accelerate model iteration and deployment. 
 
G. Summary of Key Results 
Overall, experiments confirmed: 
 Scalability: Both the e-commerce (request 

/response) and IoT (streaming) workloads 
scaled effectively via Kubernetes autoscaling, 
maintaining low latencies and high throughput. 
 

 Resource Efficiency: Dynamic node and pod 
allocation reduced overhead and halved 
approximate compute costs vs. static provisioning. 
 

 Monitoring/Debugging: Real-time observability 
identified performance bottlenecks (e.g., image 
pull delays), which we correlated with auto-
scaler events and logs. 
 

 Unified Approach: Batch and streaming workloads 
were handled by the same Kubernetes 
infrastructure, simplifying operations and tooling. 
 

 Reproducibility: The full ML workflow (from 
deployment training) was automated and 
repeatable, balancing academic rigor and real-
world demands. 

 
Tables 2 and 3 summarize metrics comparing initial 
vs. autoscaled configurations for the e-commerce 
and IoT use cases. 
 
TABLE 2: E-Commerce  Performance  Metrics  (With 
and  Without Autoscaling). 
 

Metric 
No 

Autoscale 
Autoscale 

Throughput (req/s) 50 100 

95% Latency (ms) 
>600 at 

100 req/s 
110 ms at 
100 req/s 

CPU Util. (per node) ∼90% ∼65% 

Pods (app) 1 fixed 1→4 (varied) 

Nodes (est. hrs/day) 4 × 24 = 96 ~ 2 × 24 = 48 

http://www.ijscia.com/


337 Available Online at www.ijscia.com | Volume 6 | Issue 2 | Mar - Apr  2025  
 

International Journal of Scientific Advances                                                                                                 ISSN: 2708-7972 
    

 

TABLE 3: IOT Streaming  Metrics  (With and  
Without  Autoscaling). 
 

Metric 
2 Pods 
(Fixed) 

5 Pods 
(Scaled) 

Throughput (msg/s) 200 600 

Processing Delay (s) 1.2 1.5 

CPU Util. (per node) ∼70% ∼60% 

Pods (app) 2 fixed 2→5 

Anomaly Det. 
Accuracy 

90% TPR, 
5% FPR 

Same 
accuracy 

 
E-commerce autoscaling doubled throughput 
capacity while reducing p95 latency by over 4× at 
peak load. IoT autoscaling tripled throughput with 
only a slight increase in processing time. In both 
cases, resource usage remained within acceptable 
levels, and the system adapted elastically to load 
fluctuations. 
 
These findings validate the architecture’s 
practicality for real-world deployments where 
dynamic scalability and cost efficiency are 
paramount. 
 
VI. DISCUSSION 
The experimental results demonstrate that our AI-
driven cloud-native application architecture is both 
practical and performant. We discuss the 
implications of these results, the generalizability of 
our approach, and lessons learned in building such a 
system. We also examine some trade-offs and areas 
for future work. 
 
A. Real-World Applicability 
The two use cases covered (e-commerce and IoT) 
are representative of a large class of applications. 
The architecture proved capable of handling both a 
stateless, request-response workload and a stateful 
streaming workload on the same platform. This is 
encouraging for organizations looking to 
consolidate their ML infrastructure. Rather than 
having one pipeline for batch ML and a separate 
streaming analytics stack, a Kubernetes-based 
approach can unify them. For example, a company 
could use this architecture to serve a 
recommendation model to users (as we did) while 
simultaneously using streaming anomaly detection 
for its operational analytics all managed under the 
same Kubernetes cluster and MLOps processes. 
Sharing the same toolchain (CI/CD, monitoring, etc.) 
improves productivity and reduces the learning curve 
for engineers. Future enhancements may include 
edge deployments that support resource-constrained 
environments, where low-latency inference is critical 
for assistive or time-sensitive AI [19]. 
 
B. Autoscaling and Performance Trade-offs 
One key finding is the importance of autoscaling for 
both performance and cost. However, autoscaling 
introduces complexity. The tuning of the HPA (CPU 
vs. custom metrics, scale-up/down thresholds) and 
the Cluster Autoscaler can significantly impact 
results. In our test, the default HPA 15-second 

interval and 50% CPU target worked reasonably 
well. In a production setting, operators may need 
faster responses or more complex autoscaling logic 
(e.g., predictive scaling). We noted a minor delay 
when scaling where ultra-low latency is required 
(e.g., high-frequency trading), even a few seconds 
might be unacceptable. Another consideration is 
memory overhead when multiple replicas hold large 
model caches. Our recommendation model used 
only 200 MB, but much larger models could make 
horizontal scaling more expensive. Vertical Pod 
Autoscaler and model sharding could complement 
the HPA in some scenarios. As autoscaling 
mechanisms evolve, generative AI could play a role 
in predicting optimal scaling behavior and system 
tuning [20]. 
 
C. Resource Management and GPU Utilization 
Using the GPU Operator to dynamically add GPU 
resources was a highlight of our implementation. It 
allowed expensive GPU instances to be used on 
demand, significantly reducing idle GPU costs. The 
GPU Operator automatically manages drivers and 
plugins, simplifying node scaling. However, spinning 
up a fresh GPU node is still non-trivial; the driver 
container and software stack must download, taking 
time. One workaround might be maintaining a small 
warm GPU node pool or using cheaper spot instances 
for intermittent training. Converting the PyTorch 
model to ONNX for inference was also beneficial, 
avoiding the need to ship the entire PyTorch 
framework. This approach is recommended for 
heterogeneous model environments, as it 
standardizes serving. 
 
D. Observability and MLOps Integration 
Our integration of MLflow (experiment tracking) 
with Prometheus (system monitoring) revealed 
opportunities for closed-loop MLOps. One could 
automate retraining if drift is detected, bridging the 
gap between offline training logs (MLflow) and 
online metrics (Prometheus). We only 
demonstrated a manual check, but a future iteration 
could fully automate this loop. Additionally, 
reinforcement learning for autoscaling or advanced 
resource tuning is a promising research direction on 
this platform, which already exposes relevant 
metrics for data-driven orchestration decisions. 
 
E. Security Considerations 
In production, the security of the ML pipeline is often 
undervalued in academic prototypes. We 
implemented Vault for secrets management and 
Trivy for image scanning. These did not hinder 
development velocity but prevented high-severity 
vulnerabilities from reaching the cluster. We 
emphasize that DevSecOps principles can be 
integrated into MLOps without significant overhead, 
enhancing real-world applicability [21]. 
 
F. Hybrid and Multi-Cloud Deployment 
Our design is cloud-agnostic and can extend to edge 
scenarios (via KubeEdge). While our evaluation uses a 
single cloud (AWS), the modular architecture using 
open standards like ONNX, Docker containers, Kafka, 
etc. could run on other clouds or on-prem. 

http://www.ijscia.com/


338 Available Online at www.ijscia.com | Volume 6 | Issue 2 | Mar - Apr  2025  
 

International Journal of Scientific Advances                                                                                                 ISSN: 2708-7972 
    

 

One challenge in a multi-cloud environment might be 
networking overhead, data synchronization, or 
dealing with separate control planes. But Kubernetes 
federation or multi-cluster pipelines could be 
explored. For truly mission-critical systems requiring 
extremely high availability, multi-cluster setups 
across different cloud regions could be employed. 
 
G. Limitations 
Although the demonstration was successful, our 
architecture does require familiarity with 
Kubernetes, Docker, Kubeflow, etc. Smaller teams 
may prefer managed ML platforms. Moreover, certain 
workloads (pure batch or single-step inference) may 
not need the entire stack. Our experiments focused on 
system metrics rather than user-level A/B tests or 
long-duration reliability studies. In a production 
environment, months-long usage might reveal more 
about maintainability or edge-case failures. Lastly, we 
tested basic fault tolerance (pod restarts, multi-AZ), 
but not large-scale disasters or multi-cluster 
activeactive strategies. 
 
H. Future Improvements 
Future enhancements to the system could include 
integrating serverless ML pipelines by leveraging 
platforms such as Knative or Kubeflow Functions, 
allowing certain pipeline steps to execute without 
provisioning persistent resources, thereby 
minimizing idle compute costs. Additionally, 
enabling caching and lineage tracking in Kubeflow 
Pipelines would allow for more efficient 
experimentation by skipping previously executed 
steps during iterative development. For large-scale 
training workloads, adopting distributed training 
frameworks like TFJob or PyTorchJob can support 
multi-GPU and multi-node execution. Improvements 
to model serving could be realized through KServe 
advancements, including GPU sharing, on-demand 
model loading, and sophisticated traffic routing 
techniques such as canary rollouts. Finally, 
incorporating federated learning with edge 
components like KubeEdge would enable partial 
training on distributed edge devices, enhancing data 
privacy and reducing bandwidth consumption by 
aggregating only model updates in the cloud. 
 
I. Comparative Analysis 
Comparing our approach to: 
 Serverless ML Services (AWS Lambda + 

SageMaker): Our solution supports sustained 
loads, multi-framework support, and open-
source extensibility [9]. Serverless can be 
simpler for spike loads but may suffer cold starts 
and be limited in frameworks [16]. 

 
 Monolithic On-Prem Deployments: Single-server 

solutions may suffice for small loads but lack 
elasticity. Our approach supports scaling beyond 
a single machine. 
 

 Other Research Frameworks (CodeReef, LinkEdge): 
These provide partial solutions (e.g., reproducible 
bench-marking, IoT edge integration), but do not  
 
 

always include a full cloud-native orchestration 
approach with autoscaling, security scanning, etc. 

 
Overall, the discussion highlights a Kubernetes-
based MLOps approach as powerful and practical, 
albeit with a learning curve. Our results encourage 
teams demanding both academic rigor and 
industrial scalability to adopt similar strategies. 
 

VII. CONCLUSION 
This paper presented a comprehensive study on 
building AI-driven cloud-native applications using 
Kubernetes and con- tainerization, focusing on 
unifying MLOps best practices with scalable cloud 
infrastructure. We proposed a novel Kubernetes- 
native MLOps architecture that integrates open-
source tools for every stage of the machine learning 
lifecycle from data ingestion and model training to 
deployment, monitoring, and maintenance. 
Emphasis was placed on automation, scalability, 
reproducibility, and cost-efficiency. Two real-world 
use cases, an e-commerce recommendation engine, 
and an IoT anomaly detection pipeline, validated the 
architecture. 
 

A. Key Findings 
• Scalability and Performance: The containerized 

microservice approach on Kubernetes achieved 
low latency, and real-time inference with 
horizontal autoscaling, meeting sub-200 ms 
latency targets while handling bursty loads. 
 

• Unified Platform: Both request-response and 
streaming analytics workloads run on the same 
Kubernetes cluster, simplifying operations and 
leveraging a single toolchain. 

 

• MLOps Efficiency: CI/CD integration with model 
registries (MLflow) and workflow orchestrators 
(Argo/Kubeflow) enables rapid iteration, from 
training to deployment in minutes, while 
maintaining experiment traceability. 

 

• Cloud-Native Benefits: Managed Kubernetes 
services (EKS, GKE, etc.) and operators (GPU, 
Kafka) offload cluster management, while 
advanced cloud features (spot instances, multi-
AZ) reduce cost and improve reliability. 
 

• Cost Savings: Autoscaling reduced compute costs 
significantly (up to 50% in our scenario), validating 
our goal of cost-optimized AI workflows. 

 

This work offers a practical blueprint for 
organizations and researchers aiming to deploy AI 
solutions at scale. We have made documentation and 
example manifests available for replication and 
further development. 

 

B. Future Work 
We plan to: 
• Automate Retraining: Trigger pipelines based on 

live metrics (closing the MLOps loop). 
 

• Advanced Scheduling: Improve GPU utilization 
for mixed workloads, potentially with custom 
schedulers.

http://www.ijscia.com/


339 Available Online at www.ijscia.com | Volume 6 | Issue 2 | Mar - Apr  2025  
 

International Journal of Scientific Advances                                                                                                 ISSN: 2708-7972 
    

 

• Support Larger Models: Evaluate how the 
architecture handles models like large language 
models (LLMs) and stateful serving scenarios. 
 

• Federated Learning and Edge: Extend the 
pipeline to distributed edge nodes using 
KubeEdge, performing par- tial on-site training 
for data privacy/bandwidth efficiency. 
 

• Long-term Case Study: Investigate maintainability 
and organizational impact over months of 
continuous use in an enterprise context. 
 

Future work includes integrating serverless 
inference for lightweight workloads, enabling 
GitOps-driven CI/CD with ArgoCD, and exploring 
scalable LLM deployment on GPU-backed K8s 
clusters. Edge-based AI and cost-aware autoscal- ing 
with Karpenter are also promising directions. 
 
In conclusion, Kubernetes and cloud-native 
technologies provide a powerful toolbox for AI 
solution deployment. Combined with robust MLOps 
practices, they yield systems that are scalable, 
efficient, maintainable, and reproducible. We hope 
this work serves as a reference for engineers and 
researchers, narrowing the gap between developing 
ML models and operating them as cost-effective 
services in production. 
 
VIII.  ACKNOWLEDGMENTS 
The author extends gratitude to the researchers and 
industry experts whose valuable insights have 
significantly contributed to the discourse on 
Building AI-Driven Cloud-Native Applications with 
Kubernetes and Containerization. This independent 
research does not reference any specific institutions, 
infrastructure, or proprietary data. 
 
REFERENCES 
[1] R. Innovation, “Ai-powered anomaly detection 

2024 ultimate guide — boost efficiency,” Rapid 
Innovation Blog, 2024.  [Online].  Available:  
https://www.rapidinnovation.io/post/ ai-in-
anomaly-detection-for-businesses 
 

[2] R. User, “Modern mlops architecture info 
sources,” Reddit, 2022. [Online]. Available: 
https://www.reddit.com/r/MachineLearning/ 
comments/y3n7u0/d modern mlops 
architecture info sources/ 

 
[3] A. Pandey, M. Sonawane, and S. Mamtani, 

“Deployment of ml models using kubeflow on 
different cloud providers,” arXiv preprint 
arXiv:2206.13655, 2022. [Online]. Available: 
https://arxiv.org/abs/2206. 13655 
 

[4] A. M. Burgueno-Romero, A. Benitez-Hidalgo, C. 
Barba-Gonzalez, and F. Aldana-Montes, 
“Toward an open source mlops architecture,” 
IEEE Software, 2025. [Online]. Available: 
https://www.computer.org/ 
csdl/magazine/so/2025/01/10588954/1YpR
g704XiU 

 

[5] P. K. Myakala, C. Bura, and A. K. Jonnalagadda, 
“Artificial immune systems: A bio-inspired 
paradigm for computational intelligence,” 
Journal of Artificial Intelligence and Big Data, 
vol. 5, no. 1, 2025. 

 
[6] NVIDIA, “Nvidia gpu operator documentation,” 

2023. [Online]. Available:  
https://docs.nvidia.com/datacenter/cloud-
native/gpu-operator/24.6.2/gpu-operator-
mig.html 

 
[7] Kelvin, “A curated list of awesome mlops tools,” 

GitHub Repository, 2025. [Online]. Available: 
https://github.com/kelvins/awesome-mlops 
 

[8] N. Barla, “Open source mlops: Platforms, 
frameworks, and tools,” Neptune.ai Blog, 2024. 
[Online]. Available: https://neptune.ai/blog/ 
best-open-source-mlops-tools 

 
[9] Ideas2IT, “Ai in data quality: Cleansing, 

anomaly detection & lineage,” Ideas2IT Blog, 
2025. [Online]. Available:  
https://www.ideas2it.com/blogs/ai-in-data-
cleansing 

 
[10] P. Naayini, P. K. Myakala, and C. Bura, “How ai is 

reshaping the cybersecurity landscape,” 
Available at SSRN 5138207, 2025. [Online]. 
Available:https://www.irejournals.com/paper
-details/1707153 
 

[11] R. Sharma, “Top 5 open-source mlops tool to 
boost your production,” Dev.to, 2024. [Online]. 
Available: https://dev.to/rohan sharma/top-5-
open-source-mlops-tool-to-boost-your-
production-4j0a 
 

[12] S. Kamatala, A. K. Jonnalagadda, and P. Naayini, 
“Transformers beyond nlp: Expanding 
horizons in machine learning,” Iconic Research 
and Engineering Journals, vol. 8, no. 7, 2025. 

 
[13] S. Kamatala, P. Naayini, and P. K. Myakala, 

“Mitigating bias in ai: A framework for ethical 
and fair machine learning models,” Available at 
SSRN 5138366, 2025. [Online]. Available: 
https://www.ijrar.org/papers/IJRAR25A2090
.pdf 

 
[14] A. Chatterjee and B. S. Ahmed, “Iot anomaly 

detection methods and applications: A survey,” 
Internet of Things, 2022. [Online]. Available: 
https://www.sciencedirect.com/science/articl
e/pii/S2542660522000622 
 

[15] S. Trilles, S. S. Hammad, and D. Iskandaryan, 
“Anomaly detection based on artificial 
intelligence of things: A systematic literature 
mapping,” Internet of Things, 2024. [Online]. 
Available:https://www.sciencedirect.com/scie
nce/article/pii/S2542660524000052

http://www.ijscia.com/


340 Available Online at www.ijscia.com | Volume 6 | Issue 2 | Mar - Apr  2025  
 

International Journal of Scientific Advances                                                                                                 ISSN: 2708-7972 
    

 

[16] LeewayHertz, “Ai in anomaly detection: Use 
cases, methods, algorithms and solution,” 
LeewayHertz Blog, 2023. [Online]. Available: 
https://www.leewayhertz.com/ai-in-
anomaly-detection/ 
 

[17] S. Brown, “Ai for anomaly detection. 
applications, benefits, challenges and. . . ,” 
Medium, 2024. [Online]. Available: 
https://scarlett-brown. medium.com/ai-for-
anomaly-detection-43ddb27051fe 

 
[18] K. DeMedeiros, A. Hendawi, and M. Alvarez, “A 

survey of ai-based anomaly detection in iot and 
sensor networks,” Sensors, vol. 23, 2023. 
[Online]. Available:  
https://www.mdpi.com/1424-
8220/23/3/1352 

[19] P. Naayini, P. K. Myakala, C. Bura, A. K. 
Jonnalagadda, and S. Ka- matala, “Ai-powered 
assistive technologies for visual impairment,” 
arXiv preprint arXiv:2503.15494, 2025. 
 

[20] P. Naayini, S. Kamatala, and P. K. Myakala, 
“Transforming performance engineering with 
generative ai,” Journal of Computer and 
Communications, vol. 13, no. 3, pp. 30–45, 
2025. 

 
[21] P. K. Myakala, A. K. Jonnalagadda, and C. Bura, 

“The human factor in explainable ai 
frameworks for user trust and cognitive 
alignment,” International Advanced Research 
Journal in Science, Engineering and 
Technology, vol. 12, no. 1, 2025.

 

http://www.ijscia.com/

